rivet is hosted by Hepforge, IPPP Durham

Calculate the sphericity event shape. More...

#include <Sphericity.hh>

Inheritance diagram for Sphericity:
Collaboration diagram for Sphericity:

List of all members.

Public Member Functions

void clear ()
 Reset the projection.
bool before (const Projection &p) const
virtual const std::set< PdgIdPairbeamPairs () const
virtual std::string name () const
 Get the name of the projection.
ProjectionaddPdgIdPair (PdgId beam1, PdgId beam2)
 Add a colliding beam pair.
LoggetLog () const
 Get a Log object based on the getName() property of the calling projection object.
void setName (const std::string &name)
 Used by derived classes to set their name.
Constructors etc.
 Sphericity (double rparam=2.0)
 Constructor.
 Sphericity (const FinalState &fsp, double rparam=2.0)
virtual const Projectionclone () const
 Clone on the heap.
Access the event shapes by name
double sphericity () const
double transSphericity () const
 Transverse Sphericity.
double planarity () const
 Planarity.
double aplanarity () const
 Aplanarity.
Access the sphericity basis vectors
const Vector3sphericityAxis () const
const Vector3sphericityMajorAxis () const
 Sphericity major axis.
const Vector3sphericityMinorAxis () const
 Sphericity minor axis.
const Vector3axis1 () const
 AxesDefinition axis accessors.
const Vector3axis2 () const
 The 2nd most significant ("major") axis.
const Vector3axis3 () const
 The least significant ("minor") axis.
Access the momentum tensor eigenvalues
double lambda1 () const
double lambda2 () const
double lambda3 () const
Direct methods

Ways to do the calculation directly, without engaging the caching system

void calc (const FinalState &fs)
 Manually calculate the sphericity, without engaging the caching system.
void calc (const vector< Particle > &fsparticles)
 Manually calculate the sphericity, without engaging the caching system.
void calc (const vector< FourMomentum > &fsmomenta)
 Manually calculate the sphericity, without engaging the caching system.
void calc (const vector< Vector3 > &fsmomenta)
 Manually calculate the sphericity, without engaging the caching system.
Projection "getting" functions
std::set< ConstProjectionPtrgetProjections () const
 Get the contained projections, including recursion.
template<typename PROJ >
const PROJ & getProjection (const std::string &name) const
 Get the named projection, specifying return type via a template argument.
const ProjectiongetProjection (const std::string &name) const
Projection applying functions
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const PROJ &proj) const
 Apply the supplied projection on event.
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const Projection &proj) const
 Apply the supplied projection on event.
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const std::string &name) const
 Apply the named projection on event.

Protected Member Functions

void project (const Event &e)
 Perform the projection on the Event.
int compare (const Projection &p) const
 Compare with other projections.
Cmp< ProjectionmkNamedPCmp (const Projection &otherparent, const std::string &pname) const
Cmp< ProjectionmkPCmp (const Projection &otherparent, const std::string &pname) const
ProjectionHandlergetProjHandler () const
 Get a reference to the ProjectionHandler for this thread.
Projection registration functions
template<typename PROJ >
const PROJ & addProjection (const PROJ &proj, const std::string &name)
const Projection_addProjection (const Projection &proj, const std::string &name)
 Untemplated function to do the work...

Protected Attributes

bool _allowProjReg
 Flag to forbid projection registration in analyses until the init phase.

Private Member Functions

void _calcSphericity (const vector< Vector3 > &fsmomenta)
 Actually do the calculation.

Private Attributes

vector< double > _lambdas
 Eigenvalues.
vector< Vector3_sphAxes
 Sphericity axes.
const double _regparam
 Regularizing parameter, used to force infra-red safety.

Friends

class Event
 Event is a friend.
class Cmp< Projection >
 The Cmp specialization for Projection is a friend.

Detailed Description

Calculate the sphericity event shape.

The sphericity tensor (or quadratic momentum tensor) is defined as

\[ S^{\alpha \beta} = \frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\mathbf{p}_i|^2} \]

, where the Greek indices are spatial components and the Latin indices are used for sums over particles. From this, the sphericity, aplanarity and planarity can be calculated by combinations of eigenvalues.

Defining the three eigenvalues $ \lambda_1 \ge \lambda_2 \ge \lambda_3 $, with $ \lambda_1 + \lambda_2 + \lambda_3 = 1 $, the sphericity is

\[ S = \frac{3}{2} (\lambda_2 + \lambda_3) \]

The aplanarity is $ A = \frac{3}{2}\lambda_3 $ and the planarity is $ P = \frac{2}{3}(S-2A) = \lambda_2 - \lambda_3 $. The eigenvectors define a set of spatial axes comparable with the thrust axes, but more sensitive to high momentum particles due to the quadratic sensitivity of the tensor to the particle momenta.

Since the sphericity is quadratic in the particle momenta, it is not an infrared safe observable in perturbative QCD. This can be fixed by adding a regularizing power of $r$ to the definition:

\[ S^{\alpha \beta} = \frac{\sum_i |\mathbf{p}_i|^{r-2} p_i^\alpha p_i^\beta} {\sum_i |\mathbf{p}_i|^r} \]

$r$ is available as a constructor argument on this class and will be taken into account by the Cmp<Projection> operation, so a single analysis can use several sphericity projections with different $r$ values without fear of a clash.

Definition at line 51 of file Sphericity.hh.


Constructor & Destructor Documentation

Sphericity ( double  rparam = 2.0) [inline]

Constructor.

Definition at line 59 of file Sphericity.hh.

Referenced by Sphericity::clone().

: _regparam(rparam){}
Sphericity ( const FinalState fsp,
double  rparam = 2.0 
)

Definition at line 10 of file Sphericity.cc.

References ProjectionApplier::addProjection(), Sphericity::clear(), and Projection::setName().

    : _regparam(rparam)
  {
    setName("Sphericity");
    addProjection(fsp, "FS");
    clear();
  }

Member Function Documentation

const Projection & _addProjection ( const Projection proj,
const std::string &  name 
) [protected, inherited]

Untemplated function to do the work...

Definition at line 33 of file ProjectionApplier.cc.

References ProjectionApplier::_allowProjReg, ProjectionApplier::getProjHandler(), ProjectionApplier::name(), Projection::name(), and ProjectionHandler::registerProjection().

Referenced by ProjectionApplier::addProjection().

                                                                             {
    if (!_allowProjReg) {
      cerr << "Trying to register projection '"
           << proj.name() << "' before init phase in '" << this->name() << "'." << endl;
      exit(2);
    }
    const Projection& reg = getProjHandler().registerProjection(*this, proj, name);
    return reg;
  }
void _calcSphericity ( const vector< Vector3 > &  fsmomenta) [private]

Actually do the calculation.

Definition at line 69 of file Sphericity.cc.

References Sphericity::_lambdas, Sphericity::_regparam, Sphericity::_sphAxes, Sphericity::clear(), Rivet::diagonalize(), Rivet::fuzzyEquals(), Matrix< N >::get(), EigenSystem< N >::getDiagMatrix(), EigenSystem< N >::getEigenPairs(), Matrix< N >::isSymm(), Sphericity::lambda1(), Sphericity::lambda2(), Sphericity::lambda3(), Vector< N >::mod(), MSG_DEBUG, MSG_ERROR, MSG_TRACE, Rivet::second, Matrix< N >::set(), Sphericity::sphericityAxis(), Sphericity::sphericityMajorAxis(), and Sphericity::sphericityMinorAxis().

Referenced by Sphericity::calc().

                                                                   {
    MSG_DEBUG("Calculating sphericity with r = " << _regparam);

    // Return (with "safe nonsense" sphericity params) if there are no final state particles.
    if (fsmomenta.empty()) {
      MSG_DEBUG("No particles in final state...");
      clear();
      return;
    }

    // Iterate over all the final state particles.
    Matrix3 mMom;
    double totalMomentum = 0.0;
    MSG_DEBUG("Number of particles = " << fsmomenta.size());
    foreach (const Vector3& p3, fsmomenta) {
      // Build the (regulated) normalising factor.
      totalMomentum += pow(p3.mod(), _regparam);

      // Build (regulated) quadratic momentum components.
      const double regfactor = pow(p3.mod(), _regparam-2);
      if (!fuzzyEquals(regfactor, 1.0)) {
        MSG_TRACE("Regfactor (r=" << _regparam << ") = " << regfactor);
      }

      Matrix3 mMomPart;
      for (size_t i = 0; i < 3; ++i) {
        for (size_t j = 0; j < 3; ++j) {
          mMomPart.set(i,j, p3[i]*p3[j]);
        }
      }
      mMom += regfactor * mMomPart;
    }

    // Normalise to total (regulated) momentum.
    mMom /= totalMomentum;
    MSG_DEBUG("Momentum tensor = " << "\n" << mMom);

    // Check that the matrix is symmetric.
    const bool isSymm = mMom.isSymm();
    if (!isSymm) {
      MSG_ERROR("Error: momentum tensor not symmetric (r=" << _regparam << ")");
      MSG_ERROR("[0,1] vs. [1,0]: " << mMom.get(0,1) << ", " << mMom.get(1,0));
      MSG_ERROR("[0,2] vs. [2,0]: " << mMom.get(0,2) << ", " << mMom.get(2,0));
      MSG_ERROR("[1,2] vs. [2,1]: " << mMom.get(1,2) << ", " << mMom.get(2,1));
    }
    // If not symmetric, something's wrong (we made sure the error msg appeared first).
    assert(isSymm);

    // Diagonalize momentum matrix.
    const EigenSystem<3> eigen3 = diagonalize(mMom);
    MSG_DEBUG("Diag momentum tensor = " << "\n" << eigen3.getDiagMatrix());

    // Reset and set eigenvalue/vector parameters.
    _lambdas.clear();
    _sphAxes.clear();
    const EigenSystem<3>::EigenPairs epairs = eigen3.getEigenPairs();
    assert(epairs.size() == 3);
    for (size_t i = 0; i < 3; ++i) {
      _lambdas.push_back(epairs[i].first);
      _sphAxes.push_back(Vector3(epairs[i].second));
    }

    // Debug output.
    MSG_DEBUG("Lambdas = ("
             << lambda1() << ", " << lambda2() << ", " << lambda3() << ")");
    MSG_DEBUG("Sum of lambdas = " << lambda1() + lambda2() + lambda3());
    MSG_DEBUG("Vectors = "
             << sphericityAxis() << ", "
             << sphericityMajorAxis() << ", "
             << sphericityMinorAxis() << ")");
  }
Projection& addPdgIdPair ( PdgId  beam1,
PdgId  beam2 
) [inline, inherited]

Add a colliding beam pair.

Definition at line 107 of file Projection.hh.

References Projection::_beamPairs.

Referenced by Projection::Projection().

                                                       {
      _beamPairs.insert(PdgIdPair(beam1, beam2));
      return *this;
    }
const PROJ& addProjection ( const PROJ &  proj,
const std::string &  name 
) [inline, protected, inherited]

Register a contained projection. The type of the argument is used to instantiate a new projection internally: this new object is applied to events rather than the argument object. Hence you are advised to only use locally-scoped Projection objects in your Projection and Analysis constructors, and to avoid polymorphism (e.g. handling ConcreteProjection via a pointer or reference to type Projection) since this will screw up the internal type management.

Definition at line 113 of file ProjectionApplier.hh.

References ProjectionApplier::_addProjection().

Referenced by ZFinder::_init(), WFinder::_init(), VetoedFinalState::addVetoOnThisFinalState(), BeamThrust::BeamThrust(), CDF_2009_S8057893::CDF_2009_S8057893::init(), CentralEtHCM::CentralEtHCM(), ChargedFinalState::ChargedFinalState(), ChargedLeptons::ChargedLeptons(), ClusteredPhotons::ClusteredPhotons(), DISFinalState::DISFinalState(), DISKinematics::DISKinematics(), DISLepton::DISLepton(), FinalState::FinalState(), FoxWolframMoments::FoxWolframMoments(), FParameter::FParameter(), HadronicFinalState::HadronicFinalState(), Hemispheres::Hemispheres(), IdentifiedFinalState::IdentifiedFinalState(), ATLAS_2010_S8894728::init(), CMS_2010_S8547297::init(), CMS_2010_S8656010::init(), CMS_2011_S8968497::init(), ATLAS_2011_S8994773::init(), ATLAS_2011_I894867::init(), CMS_2011_S8950903::init(), ATLAS_2010_CONF_2010_049::init(), CMS_2012_I1087342::init(), ALICE_2011_S8909580::init(), ALICE_2011_S8945144::init(), CMS_2011_S8941262::init(), CMS_2011_S8973270::init(), CMS_2011_S8978280::init(), CMS_2011_S9086218::init(), CMS_2011_S9088458::init(), CMS_2011_S9215166::init(), CMS_2012_I1107658::init(), LHCF_2012_I1115479::init(), CDF_2007_S7057202::init(), TOTEM_2012_I1115294::init(), ATLAS_2010_S8591806::init(), D0_2011_I895662::init(), CMS_2011_S8957746::init(), MC_JETS::init(), CDF_2012_NOTE10874::init(), CMS_QCD_10_024::init(), ATLAS_2011_S9002537::init(), CDF_1997_S3541940::init(), UA5_1987_S1640666::init(), MC_DIJET::init(), STAR_2006_S6500200::init(), STAR_2008_S7993412::init(), CDF_2000_S4155203::init(), CDF_2005_S6080774::init(), CDF_2006_S6450792::init(), MC_DIPHOTON::init(), SFM_1984_S1178091::init(), UA5_1982_S875503::init(), D0_2008_S6879055::init(), CDF_1993_S2742446::init(), H1_1995_S3167097::init(), MC_HJETS::init(), CDF_2008_S8093652::init(), MC_ZJETS::init(), STAR_2006_S6870392::init(), UA5_1989_S1926373::init(), CMS_2012_I1102908::init(), CDF_1988_S1865951::init(), E735_1998_S3905616::init(), MC_PHOTONJETS::init(), MC_TTBAR::init(), MC_ZZJETS::init(), CDF_2008_S7782535::init(), ATLAS_2012_I1091481::init(), ATLAS_2012_I1183818::init(), D0_1996_S3324664::init(), ALEPH_1991_S2435284::init(), ATLAS_2010_S8817804::init(), DELPHI_1999_S3960137::init(), CDF_1990_S2089246::init(), OPAL_1998_S3749908::init(), UA5_1986_S1583476::init(), ALEPH_1996_S3196992::init(), MC_IDENTIFIED::init(), MC_LEADJETUE::init(), ALEPH_2002_S4823664::init(), MC_PHOTONJETUE::init(), MC_WJETS::init(), MC_WWJETS::init(), OPAL_1995_S3198391::init(), OPAL_1996_S3257789::init(), OPAL_1997_S3608263::init(), OPAL_1998_S3702294::init(), OPAL_2000_S4418603::init(), ATLAS_2011_S8924791::init(), D0_2010_S8570965::init(), CDF_1994_S2952106::init(), JADE_OPAL_2000_S4300807::init(), MC_GENERIC::init(), CDF_2005_S6217184::init(), ATLAS_2011_I954993::init(), D0_2001_S4674421::init(), D0_2007_S7075677::init(), LHCB_2011_I919315::init(), CDF_2008_S7540469::init(), CDF_2008_S7828950::init(), ATLAS_2011_I925932::init(), UA1_1990_S2044935::init(), ZEUS_2001_S4815815::init(), D0_1996_S3214044::init(), ALICE_2010_S8624100::init(), D0_2008_S7554427::init(), D0_2008_S7863608::init(), D0_2010_S8671338::init(), DELPHI_1995_S3137023::init(), ATLAS_2011_S9131140::init(), JADE_1998_S3612880::init(), MC_PHOTONS::init(), OPAL_1997_S3396100::init(), STAR_2006_S6860818::init(), STAR_2009_UE_HELEN::init(), ALEPH_2004_S5765862::init(), EXAMPLE::init(), ATLAS_2011_S9128077::init(), ALICE_2010_S8706239::init(), CDF_2009_NOTE_9936::init(), D0_2000_S4480767::init(), ALICE_2010_S8625980::init(), D0_2009_S8202443::init(), D0_2009_S8349509::init(), CDF_2008_S8095620::init(), MC_SUSY::init(), D0_2009_S8320160::init(), ATLAS_2011_S8971293::init(), CDF_1996_S3108457::init(), CDF_2000_S4266730::init(), CDF_2001_S4563131::init(), CDF_2009_S8383952::init(), CDF_2009_S8436959::init(), CDF_1998_S3618439::init(), D0_2006_S6438750::init(), D0_2008_S7837160::init(), D0_2010_S8566488::init(), ALEPH_2001_S4656318::init(), CDF_2001_S4517016::init(), DELPHI_2002_069_CONF_603::init(), ATLAS_2012_I1082936::init(), ATLAS_2011_I926145::init(), SLD_2002_S4869273::init(), CDF_1996_S3349578::init(), D0_2010_S8821313::init(), CDF_1996_S3418421::init(), MC_WPOL::init(), ATLAS_2011_I944826::init(), D0_2008_S7662670::init(), ATLAS_2010_S8919674::init(), ATLAS_2012_I1083318::init(), UA5_1988_S1867512::init(), ATLAS_2011_S9108483::init(), ATLAS_2011_S9212183::init(), CDF_2006_S6653332::init(), CDF_2008_S7541902::init(), ATLAS_2012_I1125961::init(), ATLAS_2012_I1190891::init(), ATLAS_2011_CONF_2011_090::init(), ATLAS_2012_CONF_2012_103::init(), ATLAS_2012_I1095236::init(), ATLAS_2012_I1180197::init(), DELPHI_2000_S4328825::init(), ATLAS_2011_S9212353::init(), ATLAS_2011_S8983313::init(), ATLAS_2012_I946427::init(), ATLAS_2012_CONF_2012_104::init(), OPAL_2002_S5361494::init(), ATLAS_2012_I943401::init(), ATLAS_2012_CONF_2012_001::init(), ATLAS_2012_I1112263::init(), ATLAS_2011_S9019561::init(), SLD_1996_S3398250::init(), ATLAS_2012_CONF_2012_105::init(), ATLAS_2011_S9225137::init(), TASSO_1990_S2148048::init(), ATLAS_2012_I1117704::init(), ATLAS_2012_CONF_2012_109::init(), ATLAS_2011_CONF_2011_098::init(), ATLAS_2012_I1082009::init(), ATLAS_2012_I1186556::init(), ATLAS_2012_I1084540::init(), D0_2008_S7719523::init(), ATLAS_2012_I1126136::init(), CDF_2009_S8233977::init(), ATLAS_2012_CONF_2012_153::init(), CDF_2008_NOTE_9351::init(), CDF_2010_S8591881_DY::init(), CDF_2010_S8591881_QCD::init(), CDF_2008_LEADINGJETS::init(), D0_2004_S5992206::init(), ATLAS_2010_S8914702::init(), ATLAS_2011_S9120807::init(), ATLAS_2010_S8918562::init(), CDF_2001_S4751469::init(), LHCB_2011_I917009::init(), ATLAS_2011_I945498::init(), ATLAS_2011_S9041966::init(), DELPHI_1996_S3430090::init(), ALEPH_1996_S3486095::init(), ALEPH_1999_S4193598::init(), ATLAS_2012_I1094568::init(), OPAL_2004_S6132243::init(), ATLAS_2012_I1093738::init(), OPAL_1994_S2927284::init(), ATLAS_2011_S9126244::init(), STAR_2008_S7869363::init(), BABAR_2007_S6895344::init(), MC_VH2BB::init(), BABAR_2005_S6181155::init(), BELLE_2001_S4598261::init(), ATLAS_2011_I919017::init(), OPAL_2001_S4553896::init(), DELPHI_2003_WUD_03_11::init(), CDF_2004_S5839831::init(), CLEO_2004_S5809304::init(), ARGUS_1993_S2653028::init(), OPAL_1998_S3780481::init(), BABAR_2007_S7266081::init(), OPAL_1993_S2692198::init(), ARGUS_1993_S2669951::init(), H1_1994_S2919893::init(), H1_2000_S4129130::init(), ARGUS_1993_S2789213::init(), SLD_2004_S5693039::init(), BELLE_2006_S6265367::init(), SLD_1999_S3743934::init(), PDG_HADRON_MULTIPLICITIES::init(), PDG_HADRON_MULTIPLICITIES_RATIOS::init(), IsolationProjection< PROJ1, PROJ2, EST >::IsolationProjection(), JetAlg::JetAlg(), JetShape::JetShape(), LeadingParticlesFinalState::LeadingParticlesFinalState(), LeptonClusters::LeptonClusters(), LossyFinalState< ConstRandomFilter >::LossyFinalState(), MergedFinalState::MergedFinalState(), MissingMomentum::MissingMomentum(), Multiplicity::Multiplicity(), NeutralFinalState::NeutralFinalState(), NonHadronicFinalState::NonHadronicFinalState(), ParisiTensor::ParisiTensor(), Sphericity::Sphericity(), Spherocity::Spherocity(), Thrust::Thrust(), TriggerCDFRun0Run1::TriggerCDFRun0Run1(), TriggerCDFRun2::TriggerCDFRun2(), TriggerUA5::TriggerUA5(), VetoedFinalState::VetoedFinalState(), and VisibleFinalState::VisibleFinalState().

                                                                       {
      const Projection& reg = _addProjection(proj, name);
      const PROJ& rtn = dynamic_cast<const PROJ&>(reg);
      return rtn;
    }
double aplanarity ( ) const [inline]
const PROJ& applyProjection ( const Event evt,
const PROJ &  proj 
) const [inline, inherited]

Apply the supplied projection on event.

Definition at line 67 of file ProjectionApplier.hh.

References ProjectionApplier::_applyProjection().

Referenced by DISFinalState::project().

                                                                          {
      return pcast<PROJ>(_applyProjection(evt, proj));
    }
const PROJ& applyProjection ( const Event evt,
const Projection proj 
) const [inline, inherited]

Apply the supplied projection on event.

Definition at line 74 of file ProjectionApplier.hh.

References ProjectionApplier::_applyProjection().

                                                                                {
      return pcast<PROJ>(_applyProjection(evt, proj));
    }
const PROJ& applyProjection ( const Event evt,
const std::string &  name 
) const [inline, inherited]

Apply the named projection on event.

Definition at line 81 of file ProjectionApplier.hh.

References ProjectionApplier::_applyProjection().

                                                                               {
      return pcast<PROJ>(_applyProjection(evt, name));
    }
const Vector3& axis1 ( ) const [inline, virtual]

AxesDefinition axis accessors.

Implements AxesDefinition.

Definition at line 107 of file Sphericity.hh.

References Sphericity::sphericityAxis().

{ return sphericityAxis(); }
const Vector3& axis2 ( ) const [inline, virtual]

The 2nd most significant ("major") axis.

Implements AxesDefinition.

Definition at line 108 of file Sphericity.hh.

References Sphericity::sphericityMajorAxis().

{ return sphericityMajorAxis(); }
const Vector3& axis3 ( ) const [inline, virtual]

The least significant ("minor") axis.

Implements AxesDefinition.

Definition at line 109 of file Sphericity.hh.

References Sphericity::sphericityMinorAxis().

{ return sphericityMinorAxis(); }
const set< PdgIdPair > beamPairs ( ) const [virtual, inherited]

Return the BeamConstraints for this projection, not including recursion. Derived classes should ensure that all contained projections are registered in the _projections set for the beam constraint chaining to work.

Definition at line 39 of file Projection.cc.

References Projection::_beamPairs, Projection::beamPairs(), Projection::getLog(), ProjectionApplier::getProjections(), Rivet::intersection(), and Log::TRACE.

Referenced by Projection::beamPairs().

                                                   {
    set<PdgIdPair> ret = _beamPairs;
    set<ConstProjectionPtr> projs = getProjections();
    for (set<ConstProjectionPtr>::const_iterator ip = projs.begin(); ip != projs.end(); ++ip) {
      ConstProjectionPtr p = *ip;
      getLog() << Log::TRACE << "Proj addr = " << p << endl;
      if (p) ret = intersection(ret, p->beamPairs());
    }
    return ret;
  }
bool before ( const Projection p) const [inherited]

Determine whether this object should be ordered before the object p given as argument. If p is of a different class than this, the before() function of the corresponding type_info objects is used. Otherwise, if the objects are of the same class, the virtual compare(const Projection &) will be returned.

Definition at line 28 of file Projection.cc.

References Projection::compare().

Referenced by less< const Rivet::Projection * >::operator()().

                                                   {
    const std::type_info& thisid = typeid(*this);
    const std::type_info& otherid = typeid(p);
    if (thisid == otherid) {
      return compare(p) < 0;
    } else {
      return thisid.before(otherid);
    }
  }
void calc ( const FinalState fs)

Manually calculate the sphericity, without engaging the caching system.

Definition at line 40 of file Sphericity.cc.

References FinalState::particles().

Referenced by Sphericity::project().

                                            {
    calc(fs.particles());
  }
void calc ( const vector< Particle > &  fsparticles)

Manually calculate the sphericity, without engaging the caching system.

Definition at line 44 of file Sphericity.cc.

References Sphericity::_calcSphericity(), Particle::momentum(), and FourVector::vector3().

                                                           {
    vector<Vector3> threeMomenta;
    threeMomenta.reserve(fsparticles.size());
    foreach (const Particle& p, fsparticles) {
      const Vector3 p3 = p.momentum().vector3();
      threeMomenta.push_back(p3);
    }
    _calcSphericity(threeMomenta);
  }
void calc ( const vector< FourMomentum > &  fsmomenta)

Manually calculate the sphericity, without engaging the caching system.

Definition at line 54 of file Sphericity.cc.

References Sphericity::_calcSphericity(), and FourVector::vector3().

                                                             {
    vector<Vector3> threeMomenta;
    threeMomenta.reserve(fsmomenta.size());
    foreach (const FourMomentum& v, fsmomenta) {
      threeMomenta.push_back(v.vector3());
    }
    _calcSphericity(threeMomenta);
  }
void calc ( const vector< Vector3 > &  fsmomenta)

Manually calculate the sphericity, without engaging the caching system.

Definition at line 63 of file Sphericity.cc.

References Sphericity::_calcSphericity().

                                                        {
    _calcSphericity(fsmomenta);
  }
void clear ( )

Reset the projection.

Definition at line 19 of file Sphericity.cc.

References Sphericity::_lambdas, and Sphericity::_sphAxes.

Referenced by Sphericity::_calcSphericity(), and Sphericity::Sphericity().

                         {
    _lambdas = vector<double>(3, 0);
    _sphAxes = vector<Vector3>(3, Vector3());
  }
virtual const Projection* clone ( ) const [inline, virtual]

Clone on the heap.

Implements AxesDefinition.

Definition at line 64 of file Sphericity.hh.

References Sphericity::Sphericity().

                                            {
      return new Sphericity(*this);
    }
int compare ( const Projection p) const [protected, virtual]

Compare with other projections.

Implements Projection.

Definition at line 25 of file Sphericity.cc.

References Sphericity::_regparam, Rivet::cmp(), Rivet::EQUIVALENT, Rivet::fuzzyEquals(), and Projection::mkNamedPCmp().

                                                   {
    PCmp fscmp = mkNamedPCmp(p, "FS");
    if (fscmp != EQUIVALENT) return fscmp;
    const Sphericity& other = dynamic_cast<const Sphericity&>(p);
    if (fuzzyEquals(_regparam, other._regparam)) return 0;
    return cmp(_regparam, other._regparam);
  }
Log& getLog ( ) const [inline, inherited]

Get a Log object based on the getName() property of the calling projection object.

Reimplemented from ProjectionApplier.

Definition at line 114 of file Projection.hh.

References Projection::name().

Referenced by Projection::beamPairs(), InvMassFinalState::calc(), ChargedFinalState::project(), InitialQuarks::project(), UnstableFinalState::project(), LossyFinalState< ConstRandomFilter >::project(), and VetoedFinalState::project().

                        {
      string logname = "Rivet.Projection." + name();
      return Log::getLog(logname);
    }
const PROJ& getProjection ( const std::string &  name) const [inline, inherited]

Get the named projection, specifying return type via a template argument.

Definition at line 49 of file ProjectionApplier.hh.

References ProjectionHandler::getProjection(), and ProjectionApplier::getProjHandler().

Referenced by ProjectionApplier::_applyProjection(), Rivet::pcmp(), and Hemispheres::project().

                                                           {
      const Projection& p = getProjHandler().getProjection(*this, name);
      return pcast<PROJ>(p);
    }
const Projection& getProjection ( const std::string &  name) const [inline, inherited]

Get the named projection (non-templated, so returns as a reference to a Projection base class).

Definition at line 57 of file ProjectionApplier.hh.

References ProjectionHandler::getProjection(), and ProjectionApplier::getProjHandler().

                                                                 {
      return getProjHandler().getProjection(*this, name);
    }
std::set<ConstProjectionPtr> getProjections ( ) const [inline, inherited]

Get the contained projections, including recursion.

Definition at line 42 of file ProjectionApplier.hh.

References ProjectionHandler::DEEP, ProjectionHandler::getChildProjections(), and ProjectionApplier::getProjHandler().

Referenced by Projection::beamPairs().

double lambda1 ( ) const [inline]

Definition at line 115 of file Sphericity.hh.

References Sphericity::_lambdas.

Referenced by Sphericity::_calcSphericity(), ParisiTensor::project(), and Sphericity::transSphericity().

{ return _lambdas[0]; }
double lambda2 ( ) const [inline]
double lambda3 ( ) const [inline]
Cmp< Projection > mkPCmp ( const Projection otherparent,
const std::string &  pname 
) const [protected, inherited]

Shortcut to make a named Cmp<Projection> comparison with the *this object automatically passed as one of the parent projections.

Definition at line 57 of file Projection.cc.

References Rivet::pcmp().

                                                                {
    return pcmp(*this, otherparent, pname);
  }
double planarity ( ) const [inline]

Planarity.

Definition at line 91 of file Sphericity.hh.

References Sphericity::aplanarity(), and Sphericity::sphericity().

Referenced by DELPHI_1996_S3430090::analyze().

{ return 2 * (sphericity() - 2 * aplanarity()) / 3.0; }
void project ( const Event e) [protected, virtual]

Perform the projection on the Event.

Implements Projection.

Definition at line 34 of file Sphericity.cc.

References Sphericity::calc(), and Rivet::particles().

                                         {
    const ParticleVector prts = applyProjection<FinalState>(e, "FS").particles();
    calc(prts);
  }
void setName ( const std::string &  name) [inline, inherited]

Used by derived classes to set their name.

Definition at line 120 of file Projection.hh.

References Projection::_name, and Projection::name().

Referenced by ZFinder::_init(), WFinder::_init(), FastJets::_init1(), FastJets::_init2(), FastJets::_init3(), Beam::Beam(), BeamThrust::BeamThrust(), CentralEtHCM::CentralEtHCM(), ChargedFinalState::ChargedFinalState(), ChargedLeptons::ChargedLeptons(), ClusteredPhotons::ClusteredPhotons(), ConstLossyFinalState::ConstLossyFinalState(), DISFinalState::DISFinalState(), DISKinematics::DISKinematics(), DISLepton::DISLepton(), FinalState::FinalState(), FoxWolframMoments::FoxWolframMoments(), FParameter::FParameter(), HadronicFinalState::HadronicFinalState(), Hemispheres::Hemispheres(), IdentifiedFinalState::IdentifiedFinalState(), InitialQuarks::InitialQuarks(), IsolationProjection< PROJ1, PROJ2, EST >::IsolationProjection(), JetAlg::JetAlg(), JetShape::JetShape(), LeadingParticlesFinalState::LeadingParticlesFinalState(), LeptonClusters::LeptonClusters(), LossyFinalState< ConstRandomFilter >::LossyFinalState(), MergedFinalState::MergedFinalState(), MissingMomentum::MissingMomentum(), Multiplicity::Multiplicity(), NeutralFinalState::NeutralFinalState(), NonHadronicFinalState::NonHadronicFinalState(), ParisiTensor::ParisiTensor(), Sphericity::Sphericity(), Spherocity::Spherocity(), Thrust::Thrust(), TriggerCDFRun0Run1::TriggerCDFRun0Run1(), TriggerCDFRun2::TriggerCDFRun2(), TriggerUA5::TriggerUA5(), UnstableFinalState::UnstableFinalState(), VetoedFinalState::VetoedFinalState(), and VisibleFinalState::VisibleFinalState().

                                        {
      _name = name;
    }
const Vector3& sphericityAxis ( ) const [inline]

Definition at line 99 of file Sphericity.hh.

References Sphericity::_sphAxes.

Referenced by Sphericity::_calcSphericity(), DELPHI_1996_S3430090::analyze(), and Sphericity::axis1().

{ return _sphAxes[0]; }
const Vector3& sphericityMajorAxis ( ) const [inline]
const Vector3& sphericityMinorAxis ( ) const [inline]
double transSphericity ( ) const [inline]

Transverse Sphericity.

Definition at line 89 of file Sphericity.hh.

References Sphericity::lambda1(), and Sphericity::lambda2().

{ return 2.0 * lambda2() / ( lambda1() + lambda2() ); }

Friends And Related Function Documentation

friend class Cmp< Projection > [friend, inherited]

The Cmp specialization for Projection is a friend.

Definition at line 36 of file Projection.hh.

friend class Event [friend, inherited]

Event is a friend.

Definition at line 33 of file Projection.hh.


Member Data Documentation

bool _allowProjReg [protected, inherited]

Flag to forbid projection registration in analyses until the init phase.

Definition at line 140 of file ProjectionApplier.hh.

Referenced by ProjectionApplier::_addProjection(), and Analysis::Analysis().

vector<double> _lambdas [private]
const double _regparam [private]

Regularizing parameter, used to force infra-red safety.

Definition at line 149 of file Sphericity.hh.

Referenced by Sphericity::_calcSphericity(), and Sphericity::compare().


The documentation for this class was generated from the following files: