MathUtils.hh
Go to the documentation of this file.
00001 // -*- C++ -*- 00002 #ifndef RIVET_MathUtils_HH 00003 #define RIVET_MathUtils_HH 00004 00005 #include "Rivet/Math/MathHeader.hh" 00006 #include "Rivet/RivetBoost.hh" 00007 #include <cassert> 00008 00009 namespace Rivet { 00010 00011 00012 /// @name Comparison functions for safe floating point equality tests 00013 //@{ 00014 00015 /// Compare a floating point number to zero with a degree 00016 /// of fuzziness expressed by the absolute @a tolerance parameter. 00017 inline bool isZero(double val, double tolerance=1E-8) { 00018 return (fabs(val) < tolerance); 00019 } 00020 00021 /// Compare an integral-type number to zero. 00022 /// 00023 /// Since there is no risk of floating point error, this function just exists 00024 /// in case @c isZero is accidentally used on an integer type, to avoid 00025 /// implicit type conversion. The @a tolerance parameter is ignored. 00026 inline bool isZero(long val, double UNUSED(tolerance)=1E-8) { 00027 return val == 0; 00028 } 00029 00030 00031 /// @brief Compare two floating point numbers for equality with a degree of fuzziness 00032 /// 00033 /// The @a tolerance parameter is fractional, based on absolute values of the args. 00034 inline bool fuzzyEquals(double a, double b, double tolerance=1E-5) { 00035 const double absavg = (fabs(a) + fabs(b))/2.0; 00036 const double absdiff = fabs(a - b); 00037 const bool rtn = (isZero(a) && isZero(b)) || absdiff < tolerance*absavg; 00038 // cout << a << " == " << b << "? " << rtn << endl; 00039 return rtn; 00040 } 00041 00042 /// @brief Compare two integral-type numbers for equality with a degree of fuzziness. 00043 /// 00044 /// Since there is no risk of floating point error with integral types, 00045 /// this function just exists in case @c fuzzyEquals is accidentally 00046 /// used on an integer type, to avoid implicit type conversion. The @a 00047 /// tolerance parameter is ignored, even if it would have an 00048 /// absolute magnitude greater than 1. 00049 inline bool fuzzyEquals(long a, long b, double UNUSED(tolerance)=1E-5) { 00050 return a == b; 00051 } 00052 00053 00054 /// @brief Compare two floating point numbers for >= with a degree of fuzziness 00055 /// 00056 /// The @a tolerance parameter on the equality test is as for @c fuzzyEquals. 00057 inline bool fuzzyGtrEquals(double a, double b, double tolerance=1E-5) { 00058 return a > b || fuzzyEquals(a, b, tolerance); 00059 } 00060 00061 /// @brief Compare two integral-type numbers for >= with a degree of fuzziness. 00062 /// 00063 /// Since there is no risk of floating point error with integral types, 00064 /// this function just exists in case @c fuzzyGtrEquals is accidentally 00065 /// used on an integer type, to avoid implicit type conversion. The @a 00066 /// tolerance parameter is ignored, even if it would have an 00067 /// absolute magnitude greater than 1. 00068 inline bool fuzzyGtrEquals(long a, long b, double UNUSED(tolerance)=1E-5) { 00069 return a >= b; 00070 } 00071 00072 00073 /// @brief Compare two floating point numbers for <= with a degree of fuzziness 00074 /// 00075 /// The @a tolerance parameter on the equality test is as for @c fuzzyEquals. 00076 inline bool fuzzyLessEquals(double a, double b, double tolerance=1E-5) { 00077 return a < b || fuzzyEquals(a, b, tolerance); 00078 } 00079 00080 /// @brief Compare two integral-type numbers for <= with a degree of fuzziness. 00081 /// 00082 /// Since there is no risk of floating point error with integral types, 00083 /// this function just exists in case @c fuzzyLessEquals is accidentally 00084 /// used on an integer type, to avoid implicit type conversion. The @a 00085 /// tolerance parameter is ignored, even if it would have an 00086 /// absolute magnitude greater than 1. 00087 inline bool fuzzyLessEquals(long a, long b, double UNUSED(tolerance)=1E-5) { 00088 return a <= b; 00089 } 00090 00091 //@} 00092 00093 00094 /// @name Ranges and intervals 00095 //@{ 00096 00097 /// Represents whether an interval is open (non-inclusive) or closed (inclusive). 00098 /// 00099 /// For example, the interval \f$ [0, \pi) \f$ is closed (an inclusive 00100 /// boundary) at 0, and open (a non-inclusive boundary) at \f$ \pi \f$. 00101 enum RangeBoundary { OPEN=0, SOFT=0, CLOSED=1, HARD=1 }; 00102 00103 00104 /// @brief Determine if @a value is in the range @a low to @a high, for floating point numbers 00105 /// 00106 /// Interval boundary types are defined by @a lowbound and @a highbound. 00107 /// @todo Optimise to one-line at compile time? 00108 template<typename NUM> 00109 inline bool inRange(NUM value, NUM low, NUM high, 00110 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) { 00111 if (lowbound == OPEN && highbound == OPEN) { 00112 return (value > low && value < high); 00113 } else if (lowbound == OPEN && highbound == CLOSED) { 00114 return (value > low && fuzzyLessEquals(value, high)); 00115 } else if (lowbound == CLOSED && highbound == OPEN) { 00116 return (fuzzyGtrEquals(value, low) && value < high); 00117 } else { // if (lowbound == CLOSED && highbound == CLOSED) { 00118 return (fuzzyGtrEquals(value, low) && fuzzyLessEquals(value, high)); 00119 } 00120 } 00121 00122 /// Alternative version of inRange for doubles, which accepts a pair for the range arguments. 00123 template<typename NUM> 00124 inline bool inRange(NUM value, pair<NUM, NUM> lowhigh, 00125 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) { 00126 return inRange(value, lowhigh.first, lowhigh.second, lowbound, highbound); 00127 } 00128 00129 00130 /// @brief Determine if @a value is in the range @a low to @a high, for integer types 00131 /// 00132 /// Interval boundary types are defined by @a lowbound and @a highbound. 00133 /// @todo Optimise to one-line at compile time? 00134 inline bool inRange(int value, int low, int high, 00135 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=CLOSED) { 00136 if (lowbound == OPEN && highbound == OPEN) { 00137 return (value > low && value < high); 00138 } else if (lowbound == OPEN && highbound == CLOSED) { 00139 return (value > low && value <= high); 00140 } else if (lowbound == CLOSED && highbound == OPEN) { 00141 return (value >= low && value < high); 00142 } else { // if (lowbound == CLOSED && highbound == CLOSED) { 00143 return (value >= low && value <= high); 00144 } 00145 } 00146 00147 /// Alternative version of @c inRange for ints, which accepts a pair for the range arguments. 00148 inline bool inRange(int value, pair<int, int> lowhigh, 00149 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) { 00150 return inRange(value, lowhigh.first, lowhigh.second, lowbound, highbound); 00151 } 00152 00153 //@} 00154 00155 00156 /// @name Miscellaneous numerical helpers 00157 //@{ 00158 00159 /// Named number-type squaring operation. 00160 template <typename NUM> 00161 inline NUM sqr(NUM a) { 00162 return a*a; 00163 } 00164 00165 /// Named number-type addition in quadrature operation. 00166 template <typename Num> 00167 inline Num add_quad(Num a, Num b) { 00168 return sqrt(a*a + b*b); 00169 } 00170 00171 /// Named number-type addition in quadrature operation. 00172 template <typename Num> 00173 inline Num add_quad(Num a, Num b, Num c) { 00174 return sqrt(a*a + b*b + c*c); 00175 } 00176 00177 /// A more efficient version of pow for raising numbers to integer powers. 00178 template <typename Num> 00179 inline Num intpow(Num val, unsigned int exp) { 00180 assert(exp >= 0); 00181 if (exp == 0) return (Num) 1; 00182 else if (exp == 1) return val; 00183 return val * intpow(val, exp-1); 00184 } 00185 00186 /// Find the sign of a number 00187 inline int sign(double val) { 00188 if (isZero(val)) return ZERO; 00189 const int valsign = (val > 0) ? PLUS : MINUS; 00190 return valsign; 00191 } 00192 00193 /// Find the sign of a number 00194 inline int sign(int val) { 00195 if (val == 0) return ZERO; 00196 return (val > 0) ? PLUS : MINUS; 00197 } 00198 00199 /// Find the sign of a number 00200 inline int sign(long val) { 00201 if (val == 0) return ZERO; 00202 return (val > 0) ? PLUS : MINUS; 00203 } 00204 00205 //@} 00206 00207 00208 /// @name Binning helper functions 00209 //@{ 00210 00211 /// @brief Make a list of @a nbins + 1 values equally spaced between @a start and @a end inclusive. 00212 /// 00213 /// NB. The arg ordering and the meaning of the nbins variable is "histogram-like", 00214 /// as opposed to the Numpy/Matlab version. 00215 inline vector<double> linspace(size_t nbins, double start, double end) { 00216 assert(end >= start); 00217 assert(nbins > 0); 00218 vector<double> rtn; 00219 const double interval = (end-start)/static_cast<double>(nbins); 00220 double edge = start; 00221 while (inRange(edge, start, end, CLOSED, CLOSED)) { 00222 rtn.push_back(edge); 00223 edge += interval; 00224 } 00225 assert(rtn.size() == nbins+1); 00226 return rtn; 00227 } 00228 00229 00230 /// @brief Make a list of @a nbins + 1 values exponentially spaced between @a start and @a end inclusive. 00231 /// 00232 /// NB. The arg ordering and the meaning of the nbins variable is "histogram-like", 00233 /// as opposed to the Numpy/Matlab version, and the start and end arguments are expressed 00234 /// in "normal" space, rather than as the logarithms of the start/end values as in Numpy/Matlab. 00235 inline vector<double> logspace(size_t nbins, double start, double end) { 00236 assert(end >= start); 00237 assert(start > 0); 00238 assert(nbins > 0); 00239 const double logstart = std::log(start); 00240 const double logend = std::log(end); 00241 const vector<double> logvals = linspace(nbins, logstart, logend); 00242 assert(logvals.size() == nbins+1); 00243 vector<double> rtn; 00244 foreach (double logval, logvals) { 00245 rtn.push_back(std::exp(logval)); 00246 } 00247 assert(rtn.size() == nbins+1); 00248 return rtn; 00249 } 00250 00251 00252 /// @brief Return the bin index of the given value, @a val, given a vector of bin edges 00253 /// 00254 /// NB. The @a binedges vector must be sorted 00255 template <typename NUM> 00256 inline int index_between(const NUM& val, const vector<NUM>& binedges) { 00257 if (!inRange(val, binedges.front(), binedges.back())) return -1; //< Out of histo range 00258 int index = -1; 00259 for (size_t i = 1; i < binedges.size(); ++i) { 00260 if (val < binedges[i]) { 00261 index = i-1; 00262 break; 00263 } 00264 } 00265 assert(inRange(index, -1, binedges.size()-1)); 00266 return index; 00267 } 00268 00269 //@} 00270 00271 00272 /// @name Statistics functions 00273 //@{ 00274 00275 /// Calculate the mean of a sample 00276 inline double mean(const vector<int>& sample) { 00277 double mean = 0.0; 00278 for (size_t i=0; i<sample.size(); ++i) { 00279 mean += sample[i]; 00280 } 00281 return mean/sample.size(); 00282 } 00283 00284 // Calculate the error on the mean, assuming poissonian errors 00285 inline double mean_err(const vector<int>& sample) { 00286 double mean_e = 0.0; 00287 for (size_t i=0; i<sample.size(); ++i) { 00288 mean_e += sqrt(sample[i]); 00289 } 00290 return mean_e/sample.size(); 00291 } 00292 00293 /// Calculate the covariance (variance) between two samples 00294 inline double covariance(const vector<int>& sample1, const vector<int>& sample2) { 00295 const double mean1 = mean(sample1); 00296 const double mean2 = mean(sample2); 00297 const size_t N = sample1.size(); 00298 double cov = 0.0; 00299 for (size_t i = 0; i < N; i++) { 00300 const double cov_i = (sample1[i] - mean1)*(sample2[i] - mean2); 00301 cov += cov_i; 00302 } 00303 if (N > 1) return cov/(N-1); 00304 else return 0.0; 00305 } 00306 00307 /// Calculate the error on the covariance (variance) of two samples, assuming poissonian errors 00308 inline double covariance_err(const vector<int>& sample1, const vector<int>& sample2) { 00309 const double mean1 = mean(sample1); 00310 const double mean2 = mean(sample2); 00311 const double mean1_e = mean_err(sample1); 00312 const double mean2_e = mean_err(sample2); 00313 const size_t N = sample1.size(); 00314 double cov_e = 0.0; 00315 for (size_t i = 0; i < N; i++) { 00316 const double cov_i = (sqrt(sample1[i]) - mean1_e)*(sample2[i] - mean2) + 00317 (sample1[i] - mean1)*(sqrt(sample2[i]) - mean2_e); 00318 cov_e += cov_i; 00319 } 00320 if (N > 1) return cov_e/(N-1); 00321 else return 0.0; 00322 } 00323 00324 00325 /// Calculate the correlation strength between two samples 00326 inline double correlation(const vector<int>& sample1, const vector<int>& sample2) { 00327 const double cov = covariance(sample1, sample2); 00328 const double var1 = covariance(sample1, sample1); 00329 const double var2 = covariance(sample2, sample2); 00330 const double correlation = cov/sqrt(var1*var2); 00331 const double corr_strength = correlation*sqrt(var2/var1); 00332 return corr_strength; 00333 } 00334 00335 /// Calculate the error of the correlation strength between two samples assuming Poissonian errors 00336 inline double correlation_err(const vector<int>& sample1, const vector<int>& sample2) { 00337 const double cov = covariance(sample1, sample2); 00338 const double var1 = covariance(sample1, sample1); 00339 const double var2 = covariance(sample2, sample2); 00340 const double cov_e = covariance_err(sample1, sample2); 00341 const double var1_e = covariance_err(sample1, sample1); 00342 const double var2_e = covariance_err(sample2, sample2); 00343 00344 // Calculate the correlation 00345 const double correlation = cov/sqrt(var1*var2); 00346 // Calculate the error on the correlation 00347 const double correlation_err = cov_e/sqrt(var1*var2) - 00348 cov/(2*pow(3./2., var1*var2)) * (var1_e * var2 + var1 * var2_e); 00349 00350 00351 // Calculate the error on the correlation strength 00352 const double corr_strength_err = correlation_err*sqrt(var2/var1) + 00353 correlation/(2*sqrt(var2/var1)) * (var2_e/var1 - var2*var1_e/pow(2, var2)); 00354 00355 return corr_strength_err; 00356 } 00357 //@} 00358 00359 00360 /// @name Angle range mappings 00361 //@{ 00362 00363 /// @brief Reduce any number to the range [-2PI, 2PI] 00364 /// 00365 /// Achieved by repeated addition or subtraction of 2PI as required. Used to 00366 /// normalise angular measures. 00367 inline double _mapAngleM2PITo2Pi(double angle) { 00368 double rtn = fmod(angle, TWOPI); 00369 if (isZero(rtn)) return 0; 00370 assert(rtn >= -TWOPI && rtn <= TWOPI); 00371 return rtn; 00372 } 00373 00374 /// Map an angle into the range (-PI, PI]. 00375 inline double mapAngleMPiToPi(double angle) { 00376 double rtn = _mapAngleM2PITo2Pi(angle); 00377 if (isZero(rtn)) return 0; 00378 rtn = (rtn > PI ? rtn-TWOPI : 00379 rtn <= -PI ? rtn+TWOPI : rtn); 00380 assert(rtn > -PI && rtn <= PI); 00381 return rtn; 00382 } 00383 00384 /// Map an angle into the range [0, 2PI). 00385 inline double mapAngle0To2Pi(double angle) { 00386 double rtn = _mapAngleM2PITo2Pi(angle); 00387 if (isZero(rtn)) return 0; 00388 if (rtn < 0) rtn += TWOPI; 00389 if (rtn == TWOPI) rtn = 0; 00390 assert(rtn >= 0 && rtn < TWOPI); 00391 return rtn; 00392 } 00393 00394 /// Map an angle into the range [0, PI]. 00395 inline double mapAngle0ToPi(double angle) { 00396 double rtn = fabs(mapAngleMPiToPi(angle)); 00397 if (isZero(rtn)) return 0; 00398 assert(rtn > 0 && rtn <= PI); 00399 return rtn; 00400 } 00401 00402 //@} 00403 00404 00405 /// @name Phase space measure helpers 00406 //@{ 00407 00408 /// @brief Calculate the difference between two angles in radians 00409 /// 00410 /// Returns in the range [0, PI]. 00411 inline double deltaPhi(double phi1, double phi2) { 00412 return mapAngle0ToPi(phi1 - phi2); 00413 } 00414 00415 /// Calculate the difference between two pseudorapidities, 00416 /// returning the unsigned value. 00417 inline double deltaEta(double eta1, double eta2) { 00418 return fabs(eta1 - eta2); 00419 } 00420 00421 /// Calculate the distance between two points in 2D rapidity-azimuthal 00422 /// ("\f$ \eta-\phi \f$") space. The phi values are given in radians. 00423 inline double deltaR(double rap1, double phi1, double rap2, double phi2) { 00424 const double dphi = deltaPhi(phi1, phi2); 00425 return sqrt( sqr(rap1-rap2) + sqr(dphi) ); 00426 } 00427 00428 /// Calculate a rapidity value from the supplied energy @a E and longitudinal momentum @a pz. 00429 inline double rapidity(double E, double pz) { 00430 if (isZero(E - pz)) { 00431 throw std::runtime_error("Divergent positive rapidity"); 00432 return MAXDOUBLE; 00433 } 00434 if (isZero(E + pz)) { 00435 throw std::runtime_error("Divergent negative rapidity"); 00436 return -MAXDOUBLE; 00437 } 00438 return 0.5*log((E+pz)/(E-pz)); 00439 } 00440 00441 //@} 00442 00443 00444 } 00445 00446 00447 #endif Generated on Fri Dec 21 2012 15:03:41 for The Rivet MC analysis system by ![]() |