rivet is hosted by Hepforge, IPPP Durham
CDF_2008_NOTE_9351.cc
Go to the documentation of this file.
00001 // -*- C++ -*-
00002 #include "Rivet/Analysis.hh"
00003 #include "Rivet/RivetYODA.hh"
00004 #include "Rivet/Tools/ParticleIdUtils.hh"
00005 #include "Rivet/Tools/Logging.hh"
00006 #include "Rivet/Projections/ChargedFinalState.hh"
00007 #include "Rivet/Projections/ChargedLeptons.hh"
00008 
00009 namespace Rivet {
00010 
00011 
00012   /// @brief CDF Run II underlying event in Drell-Yan
00013   /// @author Hendrik Hoeth
00014   ///
00015   /// Measurement of the underlying event in Drell-Yan
00016   /// \f$ Z/\gamma^* \to e^+ e^- \f$ and
00017   /// \f$ Z/\gamma^* \to \mu^+ \mu^- \f$ events. The reconstructed
00018   /// Z defines the \f$ \phi \f$ orientation. A Z mass window cut is applied.
00019   ///
00020   /// @par Run conditions
00021   ///
00022   /// @arg \f$ \sqrt{s} = \f$ 1960 GeV
00023   /// @arg produce Drell-Yan events
00024   /// @arg Set particles with c*tau > 10 mm stable
00025   /// @arg Z decay mode: Z -> e+e- and Z -> mu+mu-
00026   /// @arg gamma decay mode: gamma -> e+e- and gamma -> mu+mu-
00027   /// @arg minimum invariant mass of the fermion pair coming from the Z/gamma: 70 GeV
00028   class CDF_2008_NOTE_9351 : public Analysis {
00029   public:
00030 
00031     /// Constructor
00032     CDF_2008_NOTE_9351() : Analysis("CDF_2008_NOTE_9351")
00033     {
00034     }
00035 
00036 
00037     /// @name Analysis methods
00038     //@{
00039 
00040     void init() {
00041       // Set up projections
00042       const ChargedFinalState cfs(-1.0, 1.0, 0.5*GeV);
00043       const ChargedFinalState clfs(-1.0, 1.0, 20*GeV);
00044       addProjection(cfs, "FS");
00045       addProjection(ChargedLeptons(clfs), "CL");
00046 
00047       // Book histograms
00048       _hist_tnchg      = bookProfile1D( 1, 1, 1);
00049       _hist_pnchg      = bookProfile1D( 2, 1, 1);
00050       _hist_pmaxnchg   = bookProfile1D( 3, 1, 1);
00051       _hist_pminnchg   = bookProfile1D( 4, 1, 1);
00052       _hist_pdifnchg   = bookProfile1D( 5, 1, 1);
00053       _hist_anchg      = bookProfile1D( 6, 1, 1);
00054 
00055       _hist_tcptsum    = bookProfile1D( 7, 1, 1);
00056       _hist_pcptsum    = bookProfile1D( 8, 1, 1);
00057       _hist_pmaxcptsum = bookProfile1D( 9, 1, 1);
00058       _hist_pmincptsum = bookProfile1D(10, 1, 1);
00059       _hist_pdifcptsum = bookProfile1D(11, 1, 1);
00060       _hist_acptsum    = bookProfile1D(12, 1, 1);
00061 
00062       _hist_tcptave    = bookProfile1D(13, 1, 1);
00063       _hist_pcptave    = bookProfile1D(14, 1, 1);
00064       _hist_acptave    = bookProfile1D(15, 1, 1);
00065 
00066       _hist_tcptmax    = bookProfile1D(16, 1, 1);
00067       _hist_pcptmax    = bookProfile1D(17, 1, 1);
00068       _hist_acptmax    = bookProfile1D(18, 1, 1);
00069 
00070       _hist_zptvsnchg  = bookProfile1D(19, 1, 1);
00071       _hist_cptavevsnchg = bookProfile1D(20, 1, 1);
00072       _hist_cptavevsnchgsmallzpt = bookProfile1D(21, 1, 1);
00073     }
00074 
00075 
00076     /// Do the analysis
00077     void analyze(const Event& e) {
00078 
00079       const FinalState& fs = applyProjection<FinalState>(e, "FS");
00080       const size_t numParticles = fs.particles().size();
00081 
00082       // Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
00083       if (numParticles < 1) {
00084         MSG_DEBUG("Failed multiplicity cut");
00085         vetoEvent;
00086       }
00087 
00088       // Get the event weight
00089       const double weight = e.weight();
00090 
00091       // Get the leptons
00092       const ParticleVector& leptons = applyProjection<ChargedLeptons>(e, "CL").chargedLeptons();
00093 
00094       // We want exactly two leptons of the same flavour.
00095       MSG_DEBUG("lepton multiplicity = " << leptons.size());
00096       if (leptons.size() != 2 || leptons[0].pdgId() != -leptons[1].pdgId() ) vetoEvent;
00097 
00098       // Lepton pT > 20 GeV
00099       if (leptons[0].momentum().pT()/GeV <= 20 || leptons[1].momentum().pT()/GeV <= 20) vetoEvent;
00100 
00101       // Lepton pair should have an invariant mass between 70 and 110 and |eta| < 6
00102       const FourMomentum dilepton = leptons[0].momentum() + leptons[1].momentum();
00103       if (!inRange(dilepton.mass()/GeV, 70., 110.) || fabs(dilepton.eta()) >= 6) vetoEvent;
00104       MSG_DEBUG("Dilepton mass = " << mass(dilepton)/GeV << " GeV");
00105       MSG_DEBUG("Dilepton pT   = " << pT(dilepton)/GeV << " GeV");
00106 
00107       // Calculate the observables
00108       size_t   numToward(0),     numAway(0);
00109       long int numTrans1(0),     numTrans2(0);
00110       double ptSumToward(0.0), ptSumTrans1(0.0), ptSumTrans2(0.0), ptSumAway(0.0);
00111       double ptMaxToward(0.0), ptMaxTrans1(0.0), ptMaxTrans2(0.0), ptMaxAway(0.0);
00112       const double phiZ = azimuthalAngle(dilepton);
00113       const double pTZ  = pT(dilepton);
00114       /// @todo Replace with foreach
00115       for (ParticleVector::const_iterator p = fs.particles().begin(); p != fs.particles().end(); ++p) {
00116         // Don't use the leptons
00117         /// @todo Replace with PID::isLepton
00118         if (abs(p->pdgId()) < 20) continue;
00119 
00120         const double dPhi = deltaPhi(p->momentum().phi(), phiZ);
00121         const double pT = p->momentum().pT();
00122         double rotatedphi = p->momentum().phi() - phiZ;
00123         while (rotatedphi < 0) rotatedphi += 2*PI;
00124 
00125         if (dPhi < PI/3.0) {
00126           ptSumToward += pT;
00127           ++numToward;
00128           if (pT > ptMaxToward)
00129             ptMaxToward = pT;
00130         } else if (dPhi < 2*PI/3.0) {
00131           if (rotatedphi <= PI) {
00132             ptSumTrans1 += pT;
00133             ++numTrans1;
00134             if (pT > ptMaxTrans1)
00135               ptMaxTrans1 = pT;
00136           }
00137           else {
00138             ptSumTrans2 += pT;
00139             ++numTrans2;
00140             if (pT > ptMaxTrans2)
00141               ptMaxTrans2 = pT;
00142           }
00143         } else {
00144           ptSumAway += pT;
00145           ++numAway;
00146           if (pT > ptMaxAway)
00147             ptMaxAway = pT;
00148         }
00149         // We need to subtract the two leptons from the number of particles to get the correct multiplicity
00150         _hist_cptavevsnchg->fill(numParticles-2, pT, weight);
00151         if (pTZ < 10)
00152           _hist_cptavevsnchgsmallzpt->fill(numParticles-2, pT, weight);
00153       }
00154 
00155       // Fill the histograms
00156       _hist_tnchg->fill(pTZ, numToward/(4*PI/3), weight);
00157       _hist_pnchg->fill(pTZ, (numTrans1+numTrans2)/(4*PI/3), weight);
00158       _hist_pmaxnchg->fill(pTZ, (numTrans1>numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight);
00159       _hist_pminnchg->fill(pTZ, (numTrans1<numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight);
00160       _hist_pdifnchg->fill(pTZ, abs(numTrans1-numTrans2)/(2*PI/3), weight);
00161       _hist_anchg->fill(pTZ, numAway/(4*PI/3), weight);
00162 
00163       _hist_tcptsum->fill(pTZ, ptSumToward/(4*PI/3), weight);
00164       _hist_pcptsum->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(4*PI/3), weight);
00165       _hist_pmaxcptsum->fill(pTZ, (ptSumTrans1>ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3), weight);
00166       _hist_pmincptsum->fill(pTZ, (ptSumTrans1<ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3), weight);
00167       _hist_pdifcptsum->fill(pTZ, fabs(ptSumTrans1-ptSumTrans2)/(2*PI/3), weight);
00168       _hist_acptsum->fill(pTZ, ptSumAway/(4*PI/3), weight);
00169 
00170       if (numToward > 0) {
00171         _hist_tcptave->fill(pTZ, ptSumToward/numToward, weight);
00172         _hist_tcptmax->fill(pTZ, ptMaxToward, weight);
00173       }
00174       if ((numTrans1+numTrans2) > 0) {
00175         _hist_pcptave->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(numTrans1+numTrans2), weight);
00176         _hist_pcptmax->fill(pTZ, (ptMaxTrans1 > ptMaxTrans2 ? ptMaxTrans1 : ptMaxTrans2), weight);
00177       }
00178       if (numAway > 0) {
00179         _hist_acptave->fill(pTZ, ptSumAway/numAway, weight);
00180         _hist_acptmax->fill(pTZ, ptMaxAway, weight);
00181       }
00182 
00183       // We need to subtract the two leptons from the number of particles to get the correct multiplicity
00184       _hist_zptvsnchg->fill(numParticles-2, pTZ, weight);
00185     }
00186 
00187 
00188     void finalize() {
00189       //
00190     }
00191 
00192     //@}
00193 
00194   private:
00195 
00196     Profile1DPtr _hist_tnchg;
00197     Profile1DPtr _hist_pnchg;
00198     Profile1DPtr _hist_pmaxnchg;
00199     Profile1DPtr _hist_pminnchg;
00200     Profile1DPtr _hist_pdifnchg;
00201     Profile1DPtr _hist_anchg;
00202     Profile1DPtr _hist_tcptsum;
00203     Profile1DPtr _hist_pcptsum;
00204     Profile1DPtr _hist_pmaxcptsum;
00205     Profile1DPtr _hist_pmincptsum;
00206     Profile1DPtr _hist_pdifcptsum;
00207     Profile1DPtr _hist_acptsum;
00208     Profile1DPtr _hist_tcptave;
00209     Profile1DPtr _hist_pcptave;
00210     Profile1DPtr _hist_acptave;
00211     Profile1DPtr _hist_tcptmax;
00212     Profile1DPtr _hist_pcptmax;
00213     Profile1DPtr _hist_acptmax;
00214     Profile1DPtr _hist_zptvsnchg;
00215     Profile1DPtr _hist_cptavevsnchg;
00216     Profile1DPtr _hist_cptavevsnchgsmallzpt;
00217 
00218   };
00219 
00220 
00221 
00222   // The hook for the plugin system
00223   DECLARE_RIVET_PLUGIN(CDF_2008_NOTE_9351);
00224 
00225 }