rivet is hosted by Hepforge, IPPP Durham
Rivet  2.7.0

Calculate the sphericity event shape. More...

#include <Sphericity.hh>

Inheritance diagram for Rivet::Sphericity:
Rivet::AxesDefinition Rivet::Projection Rivet::ProjectionApplier

Public Member Functions

void clear ()
 Reset the projection.
 
Vector3 mkEigenVector (Matrix3 A, const double &lambda)
 
Constructors etc.
 Sphericity (double rparam=2.0)
 Constructor.
 
 Sphericity (const FinalState &fsp, double rparam=2.0)
 
 DEFAULT_RIVET_PROJ_CLONE (Sphericity)
 Clone on the heap.
 
Access the event shapes by name
double sphericity () const
 Sphericity.
 
double transSphericity () const
 Transverse sphericity.
 
double planarity () const
 Planarity.
 
double aplanarity () const
 Aplanarity.
 
Access the sphericity basis vectors
const Vector3sphericityAxis () const
 Sphericity axis.
 
const Vector3sphericityMajorAxis () const
 Sphericity major axis.
 
const Vector3sphericityMinorAxis () const
 Sphericity minor axis.
 
AxesDefinition axis accessors
const Vector3axis1 () const
 
const Vector3axis2 () const
 The 2nd most significant ("major") axis.
 
const Vector3axis3 () const
 The least significant ("minor") axis.
 
Access the momentum tensor eigenvalues
double lambda1 () const
 
double lambda2 () const
 
double lambda3 () const
 
Direct methods

Ways to do the calculation directly, without engaging the caching system

void calc (const FinalState &fs)
 Manually calculate the sphericity, without engaging the caching system.
 
void calc (const Particles &particles)
 Manually calculate the sphericity, without engaging the caching system.
 
void calc (const Jets &jets)
 Manually calculate the sphericity, without engaging the caching system.
 
void calc (const vector< FourMomentum > &momenta)
 Manually calculate the sphericity, without engaging the caching system.
 
void calc (const vector< Vector3 > &momenta)
 Manually calculate the sphericity, without engaging the caching system. More...
 
- Public Member Functions inherited from Rivet::AxesDefinition
virtual ~AxesDefinition ()
 Virtual destructor.
 
virtual unique_ptr< Projectionclone () const =0
 Clone on the heap.
 
- Public Member Functions inherited from Rivet::Projection
virtual std::string name () const
 Get the name of the projection.
 
 Projection ()
 The default constructor.
 
virtual ~Projection ()
 The destructor.
 
bool before (const Projection &p) const
 
virtual const std::set< PdgIdPair > beamPairs () const
 
ProjectionaddPdgIdPair (PdgId beam1, PdgId beam2)
 
- Public Member Functions inherited from Rivet::ProjectionApplier
 ProjectionApplier ()
 Constructor.
 
void markAsOwned () const
 Mark this object as owned by a proj-handler.
 
std::set< ConstProjectionPtr > getProjections () const
 Get the contained projections, including recursion.
 
bool hasProjection (const std::string &name) const
 Does this applier have a projection registered under the name name?
 
template<typename PROJ >
const PROJ & getProjection (const std::string &name) const
 
template<typename PROJ >
const PROJ & get (const std::string &name) const
 
const ProjectiongetProjection (const std::string &name) const
 
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const Projection &proj) const
 Apply the supplied projection on event evt. More...
 
template<typename PROJ >
const PROJ & apply (const Event &evt, const Projection &proj) const
 
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const PROJ &proj) const
 Apply the supplied projection on event evt. More...
 
template<typename PROJ >
const PROJ & apply (const Event &evt, const PROJ &proj) const
 
template<typename PROJ >
const PROJ & applyProjection (const Event &evt, const std::string &name) const
 
template<typename PROJ >
const PROJ & apply (const Event &evt, const std::string &name) const
 
template<typename PROJ >
const PROJ & apply (const std::string &name, const Event &evt) const
 

Protected Member Functions

void project (const Event &e)
 Perform the projection on the Event.
 
int compare (const Projection &p) const
 Compare with other projections.
 
- Protected Member Functions inherited from Rivet::Projection
LoggetLog () const
 Get a Log object based on the getName() property of the calling projection object.
 
void setName (const std::string &name)
 Used by derived classes to set their name.
 
Cmp< ProjectionmkNamedPCmp (const Projection &otherparent, const std::string &pname) const
 
Cmp< ProjectionmkPCmp (const Projection &otherparent, const std::string &pname) const
 
virtual Projectionoperator= (const Projection &)
 Block Projection copying.
 
- Protected Member Functions inherited from Rivet::ProjectionApplier
LoggetLog () const
 
ProjectionHandlergetProjHandler () const
 Get a reference to the ProjectionHandler for this thread.
 
template<typename PROJ >
const PROJ & declareProjection (const PROJ &proj, const std::string &name)
 Register a contained projection. More...
 
template<typename PROJ >
const PROJ & declare (const PROJ &proj, const std::string &name)
 Register a contained projection (user-facing version) More...
 
template<typename PROJ >
const PROJ & declare (const std::string &name, const PROJ &proj)
 Register a contained projection (user-facing, arg-reordered version) More...
 
template<typename PROJ >
const PROJ & addProjection (const PROJ &proj, const std::string &name)
 Register a contained projection (user-facing version) More...
 

Detailed Description

Calculate the sphericity event shape.

The sphericity tensor (or quadratic momentum tensor) is defined as

\[ S^{\alpha \beta} = \frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\mathbf{p}_i|^2} \]

, where the Greek indices are spatial components and the Latin indices are used for sums over particles. From this, the sphericity, aplanarity and planarity can be calculated by combinations of eigenvalues.

Defining the three eigenvalues $ \lambda_1 \ge \lambda_2 \ge \lambda_3 $, with $ \lambda_1 + \lambda_2 + \lambda_3 = 1 $, the sphericity is

\[ S = \frac{3}{2} (\lambda_2 + \lambda_3) \]

The aplanarity is $ A = \frac{3}{2}\lambda_3 $ and the planarity is $ P = \frac{2}{3}(S-2A) = \lambda_2 - \lambda_3 $. The eigenvectors define a set of spatial axes comparable with the thrust axes, but more sensitive to high momentum particles due to the quadratic sensitivity of the tensor to the particle momenta.

Since the sphericity is quadratic in the particle momenta, it is not an infrared safe observable in perturbative QCD. This can be fixed by adding a regularizing power of $r$ to the definition:

\[ S^{\alpha \beta} = \frac{\sum_i |\mathbf{p}_i|^{r-2} p_i^\alpha p_i^\beta} {\sum_i |\mathbf{p}_i|^r} \]

$r$ is available as a constructor argument on this class and will be taken into account by the Cmp<Projection> operation, so a single analysis can use several sphericity projections with different $r$ values without fear of a clash.

Member Function Documentation

◆ axis1()

const Vector3& Rivet::Sphericity::axis1 ( ) const
inlinevirtual

Axis accessors, in decreasing order of significance. The main axis.

Implements Rivet::AxesDefinition.

References sphericityAxis().

◆ calc()

void Rivet::Sphericity::calc ( const vector< Vector3 > &  momenta)

Manually calculate the sphericity, without engaging the caching system.

This one actually does the calculation

References Rivet::fuzzyEquals(), Rivet::Matrix< N >::isSymm(), Rivet::Vector< N >::mod(), and Rivet::Matrix< N >::trace().


The documentation for this class was generated from the following files:
  • include/Rivet/Projections/Sphericity.hh
  • src/Projections/Sphericity.cc