Vector4.hh

Go to the documentation of this file.
00001 #ifndef RIVET_MATH_VECTOR4
00002 #define RIVET_MATH_VECTOR4
00003 
00004 #include "Rivet/Math/MathHeader.hh"
00005 #include "Rivet/Math/MathUtils.hh"
00006 #include "Rivet/Math/VectorN.hh"
00007 #include "Rivet/Math/Vector3.hh"
00008 
00009 namespace Rivet {
00010 
00011 
00012   class FourVector;
00013   class FourMomentum;
00014   class LorentzTransform;
00015   typedef FourVector Vector4;
00016   FourVector transform(const LorentzTransform& lt, const FourVector& v4);
00017 
00018 
00019   class FourVector : public Vector<4> {
00020     friend FourVector multiply(const double a, const FourVector& v);
00021     friend FourVector multiply(const FourVector& v, const double a);
00022     friend FourVector add(const FourVector& a, const FourVector& b);
00023     friend FourVector transform(const LorentzTransform& lt, const FourVector& v4);
00024 
00025   public:
00026     FourVector() : Vector<4>() { }
00027 
00028     template<typename V4>
00029     FourVector(const V4& other) {
00030       this->setT(other.t());
00031       this->setX(other.x());
00032       this->setY(other.y());
00033       this->setZ(other.z());
00034     }
00035 
00036     FourVector(const Vector<4>& other)
00037     : Vector<4>(other) { }
00038 
00039     FourVector(const double t, const double x, const double y, const double z) {
00040       this->setT(t);
00041       this->setX(x);
00042       this->setY(y);
00043       this->setZ(z);
00044     }
00045 
00046     virtual ~FourVector() { }
00047 
00048   public:
00049     double t() const { return get(0); }
00050     double x() const { return get(1); }
00051     double y() const { return get(2); }
00052     double z() const { return get(3); }
00053     FourVector& setT(const double t) { set(0, t); return *this; }
00054     FourVector& setX(const double x) { set(1, x); return *this; }
00055     FourVector& setY(const double y) { set(2, y); return *this; }
00056     FourVector& setZ(const double z) { set(3, z); return *this; }
00057 
00058     double invariant() const {
00059       return t()*t() - x()*x() - y()*y() - z()*z();
00060     }
00061 
00062     double angle(const FourVector& v) const {
00063       return vector3().angle( v.vector3() );
00064     }
00065 
00066     double angle(const Vector3& v3) const {
00067       return vector3().angle(v3);
00068     }
00069 
00070     double polarRadius2() const {
00071       return vector3().polarRadius2();
00072     }
00073 
00074     /// Synonym for polarRadius2
00075     double perp2() const {
00076       return vector3().perp2();
00077     }
00078 
00079     /// Synonym for polarRadius2
00080     double rho2() const {
00081       return vector3().rho2();
00082     }
00083 
00084     double polarRadius() const {
00085       return vector3().polarRadius();
00086     }
00087 
00088     /// Synonym for polarRadius
00089     double perp() const {
00090       return vector3().perp();
00091     }
00092 
00093     /// Synonym for polarRadius
00094     double rho() const {
00095       return vector3().rho();
00096     }
00097 
00098     /// Angle subtended by the 3-vector's projection in x-y and the x-axis.
00099     double azimuthalAngle(const PhiMapping mapping = ZERO_2PI) const {
00100       return vector3().azimuthalAngle(mapping);
00101     }
00102 
00103     /// Synonym for azimuthalAngle.
00104     double phi(const PhiMapping mapping = ZERO_2PI) const {
00105       return vector3().phi(mapping);
00106     }
00107 
00108     /// Angle subtended by the 3-vector and the z-axis.
00109     double polarAngle() const {
00110       return vector3().polarAngle();
00111     }
00112 
00113     /// Synonym for polarAngle.
00114     double theta() const {
00115       return vector3().theta();
00116     }
00117 
00118     double pseudorapidity() const {
00119       return vector3().pseudorapidity();
00120     }
00121 
00122     /// Synonym for pseudorapidity.
00123     double eta() const {
00124       return vector3().eta();
00125     }
00126 
00127     /// Get the spatial part of the 4-vector as a 3-vector.
00128     Vector3 vector3() const {
00129       return Vector3(get(1), get(2), get(3));
00130     }
00131 
00132   public:
00133     /// Contract two 4-vectors, with metric signature (+ - - -).
00134     double contract(const FourVector& v) const {
00135       const double result = t()*v.t() - x()*v.x() - y()*v.y() - z()*v.z();
00136       return result;
00137     }
00138 
00139     /// Contract two 4-vectors, with metric signature (+ - - -).
00140     double dot(const FourVector& v) const {
00141       return contract(v);
00142     }
00143 
00144     /// Contract two 4-vectors, with metric signature (+ - - -).
00145     double operator*(const FourVector& v) const {
00146       return contract(v);
00147     }
00148 
00149     /// Multiply by a scalar
00150     FourVector& operator*=(double a) {
00151       _vec = multiply(a, *this)._vec;
00152       return *this;
00153     }
00154 
00155     /// Divide by a scalar
00156     FourVector& operator/=(double a) {
00157       _vec = multiply(1.0/a, *this)._vec;
00158       return *this;
00159     }
00160 
00161     FourVector& operator+=(const FourVector& v) {
00162       _vec = add(*this, v)._vec;
00163       return *this;
00164     }
00165 
00166     FourVector& operator-=(const FourVector& v) {
00167       _vec = add(*this, -v)._vec;
00168       return *this;
00169     }
00170 
00171     FourVector operator-() const {
00172       FourVector result;
00173       result._vec = -_vec;
00174       return result;
00175     }
00176 
00177   };
00178 
00179 
00180   /// Contract two 4-vectors, with metric signature (+ - - -).
00181   inline double contract(const FourVector& a, const FourVector& b) {
00182     return a.contract(b);
00183   }
00184 
00185   /// Contract two 4-vectors, with metric signature (+ - - -).
00186   inline double dot(const FourVector& a, const FourVector& b) {
00187     return contract(a, b);
00188   }
00189 
00190   inline FourVector multiply(const double a, const FourVector& v) {
00191     FourVector result;
00192     result._vec = a * v._vec;
00193     return result;
00194   }
00195 
00196   inline FourVector multiply(const FourVector& v, const double a) {
00197     return multiply(a, v);
00198   }
00199 
00200   inline FourVector operator*(const double a, const FourVector& v) {
00201     return multiply(a, v);
00202   }
00203 
00204   inline FourVector operator*(const FourVector& v, const double a) {
00205     return multiply(a, v);
00206   }
00207 
00208   inline FourVector operator/(const FourVector& v, const double a) {
00209     return multiply(1.0/a, v);
00210   }
00211 
00212   inline FourVector add(const FourVector& a, const FourVector& b) {
00213     FourVector result;
00214     result._vec = a._vec + b._vec;
00215     return result;
00216   }
00217 
00218   inline FourVector operator+(const FourVector& a, const FourVector& b) {
00219     return add(a, b);
00220   }
00221 
00222   inline FourVector operator-(const FourVector& a, const FourVector& b) {
00223     return add(a, -b);
00224   }
00225 
00226   /// Calculate the Lorentz self-invariant of a 4-vector.
00227   /// \f$ v_\mu v^\mu = g_{\mu\nu} x^\mu x^\nu \f$.
00228   inline double invariant(const FourVector& lv) {
00229     return lv.invariant();
00230   }
00231 
00232   /// Angle (in radians) between spatial parts of two Lorentz vectors.
00233   inline double angle(const FourVector& a, const FourVector& b) {
00234     return a.angle(b);
00235   }
00236 
00237   /// Angle (in radians) between spatial parts of two Lorentz vectors.
00238   inline double angle(const Vector3& a, const FourVector& b) {
00239     return angle( a, b.vector3() );
00240   }
00241 
00242   /// Angle (in radians) between spatial parts of two Lorentz vectors.
00243   inline double angle(const FourVector& a, const Vector3& b) {
00244     return a.angle(b);
00245   }
00246 
00247   /// Calculate transverse length sq. \f$ \rho^2 \f$ of a Lorentz vector.
00248   inline double polarRadius2(const FourVector& v) {
00249     return v.polarRadius2();
00250   }
00251   /// Synonym for polarRadius2.
00252   inline double perp2(const FourVector& v) {
00253     return v.perp2();
00254   }
00255   /// Synonym for polarRadius2.
00256   inline double rho2(const FourVector& v) {
00257     return v.rho2();
00258   }
00259 
00260   /// Calculate transverse length \f$ \rho \f$ of a Lorentz vector.
00261   inline double polarRadius(const FourVector& v) {
00262     return v.polarRadius();
00263   }
00264   /// Synonym for polarRadius.
00265   inline double perp(const FourVector& v) {
00266     return v.perp();
00267   }
00268   /// Synonym for polarRadius.
00269   inline double rho(const FourVector& v) {
00270     return v.rho();
00271   }
00272 
00273   /// Calculate azimuthal angle of a Lorentz vector.
00274   inline double azimuthalAngle(const FourVector& v, const PhiMapping mapping = ZERO_2PI) {
00275     return v.azimuthalAngle(mapping);
00276   }
00277   /// Synonym for azimuthalAngle.
00278   inline double phi(const FourVector& v, const PhiMapping mapping = ZERO_2PI) {
00279     return v.phi(mapping);
00280   }
00281 
00282 
00283   /// Calculate polar angle of a Lorentz vector.
00284   inline double polarAngle(const FourVector& v) {
00285     return v.polarAngle();
00286   }
00287   /// Synonym for polarAngle.
00288   inline double theta(const FourVector& v) {
00289     return v.theta();
00290   }
00291 
00292   /// Calculate pseudorapidity of a Lorentz vector.
00293   inline double pseudorapidity(const FourVector& v) {
00294     return v.pseudorapidity();
00295   }
00296   /// Synonym for pseudorapidity.
00297   inline double eta(const FourVector& v) {
00298     return v.eta();
00299   }
00300 
00301 
00302 
00303   ////////////////////////////////////////////////
00304 
00305 
00306 
00307   /// Specialized version of the FourVector with momentum/energy functionality.
00308   class FourMomentum : public FourVector {
00309   public:
00310     FourMomentum() { }
00311 
00312     template<typename V4>
00313     FourMomentum(const V4& other) {
00314       this->setE(other.t());
00315       this->setPx(other.x());
00316       this->setPy(other.y());
00317       this->setPz(other.z());
00318     }
00319 
00320     FourMomentum(const Vector<4>& other)
00321       : FourVector(other) { }
00322 
00323     FourMomentum(const double E, const double px, const double py, const double pz) {
00324       this->setE(E);
00325       this->setPx(px);
00326       this->setPy(py);
00327       this->setPz(pz);
00328     }
00329 
00330     ~FourMomentum() {}
00331 
00332   public:
00333     /// Get energy \f$ E \f$ (time component of momentum).
00334     double E() const { return t(); }
00335 
00336     /// Get 3-momentum part, \f$ p \f$.
00337     Vector3 p() const { return vector3(); }
00338 
00339     /// Get x-component of momentum \f$ p_x \f$.
00340     double px() const { return x(); }
00341 
00342     /// Get y-component of momentum \f$ p_y \f$.
00343     double py() const { return y(); }
00344 
00345     /// Get z-component of momentum \f$ p_z \f$.
00346     double pz() const { return z(); }
00347 
00348     /// Set energy \f$ E \f$ (time component of momentum).
00349     FourMomentum& setE(double E)   { setT(E); return *this; }
00350 
00351     /// Set x-component of momentum \f$ p_x \f$.
00352     FourMomentum& setPx(double px) { setX(px); return *this; }
00353 
00354     /// Set y-component of momentum \f$ p_y \f$.
00355     FourMomentum& setPy(double py) { setY(py); return *this; }
00356 
00357     /// Set z-component of momentum \f$ p_z \f$.
00358     FourMomentum& setPz(double pz) { setZ(pz); return *this; }
00359 
00360     /// Get squared mass \f$ m^2 = E^2 - p^2 \f$ (the Lorentz self-invariant).
00361     double mass2() const {
00362       return invariant();
00363     }
00364 
00365     /// Get mass \f$ m = \sqrt{E^2 - p^2} \f$ (the Lorentz self-invariant).
00366     double mass() const {
00367       assert(Rivet::isZero(mass2()) || mass2() > 0);
00368       return sqrt(mass2());
00369     }
00370 
00371     /// Calculate rapidity.
00372     double rapidity() const {
00373       return 0.5 * std::log( (E() + pz()) / (E() - pz()) );
00374     }
00375 
00376     /// Calculate squared transverse momentum \f$ p_T^2 \f$.
00377     double pT2() const {
00378       return vector3().polarRadius2();
00379     }
00380 
00381     /// Calculate transverse momentum \f$ p_T \f$.
00382     double pT() const {
00383       return sqrt(pT2());
00384     }
00385 
00386     /// Calculate transverse energy \f$ E_T^2 = E^2 \sin^2{\theta} \f$.
00387     double Et2() const {
00388       return Et() * Et();
00389     }
00390 
00391     /// Calculate transverse energy \f$ E_T = E \sin{\theta} \f$.
00392     double Et() const {
00393       return E() * sin(polarAngle());
00394     }
00395 
00396     /// Calculate boost vector (in units of \f$ \beta \f$).
00397     Vector3 boostVector() const {
00398       // const Vector3 p3 = vector3();
00399       // const double m2 = mass2();
00400       // if (Rivet::isZero(m2)) return p3.unit();
00401       // else {
00402       //   // Could also do this via beta = tanh(rapidity), but that's
00403       //   // probably more messy from a numerical hygiene point of view.
00404       //   const double p2 = p3.mod2();
00405       //   const double beta = sqrt( p2 / (m2 + p2) );
00406       //   return beta * p3.unit();
00407       // }
00408       /// @todo Be careful about c=1 convention...
00409       return Vector3(px()/E(), py()/E(), pz()/E());
00410     }
00411 
00412     /// struct for sorting by increasing energy
00413  
00414     struct byEAscending{
00415       bool operator()(const FourMomentum &left, const FourMomentum &right) const{
00416         double pt2left = left.E();
00417         double pt2right = right.E();
00418         return pt2left < pt2right;
00419       }
00420    
00421       bool operator()(const FourMomentum *left, const FourMomentum *right) const{
00422         return (*this)(left, right);
00423       }
00424     };
00425  
00426     /// struct for sorting by decreasing energy
00427  
00428     struct byEDescending{
00429       bool operator()(const FourMomentum &left, const FourMomentum &right) const{
00430         return byEAscending()(right, left);
00431       }
00432    
00433       bool operator()(const FourMomentum *left, const FourVector *right) const{
00434         return (*this)(left, right);
00435       }
00436     };
00437  
00438   };
00439 
00440 
00441   /// Get squared mass \f$ m^2 = E^2 - p^2 \f$ (the Lorentz self-invariant) of a momentum 4-vector.
00442   inline double mass2(const FourMomentum& v) {
00443     return v.mass2();
00444   }
00445 
00446   /// Get mass \f$ m = \sqrt{E^2 - p^2} \f$ (the Lorentz self-invariant) of a momentum 4-vector.
00447   inline double mass(const FourMomentum& v) {
00448     return v.mass();
00449   }
00450 
00451   /// Calculate rapidity of a momentum 4-vector.
00452   inline double rapidity(const FourMomentum& v) {
00453     return v.rapidity();
00454   }
00455 
00456   /// Calculate squared transverse momentum \f$ p_T^2 \f$ of a momentum 4-vector.
00457   inline double pT2(const FourMomentum& v) {
00458     return v.pT2();
00459   }
00460 
00461   /// Calculate transverse momentum \f$ p_T \f$ of a momentum 4-vector.
00462   inline double pT(const FourMomentum& v) {
00463     return v.pT();
00464   }
00465 
00466   /// Calculate transverse energy squared, \f$ E_T^2 = E^2 \sin^2{\theta} \f$ of a momentum 4-vector.
00467   inline double Et2(const FourMomentum& v) {
00468     return v.Et2();}
00469 
00470   /// Calculate transverse energy \f$ E_T = E \sin{\theta} \f$ of a momentum 4-vector.
00471   inline double Et(const FourMomentum& v) {
00472     return v.Et();
00473   }
00474 
00475   /// Calculate velocity boost vector of a momentum 4-vector.
00476   inline Vector3 boostVector(const FourMomentum& v) {
00477     return v.boostVector();
00478   }
00479 
00480 
00481   //////////////////////////////////////////////////////
00482 
00483 
00484   /// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two
00485   /// four-vectors. There is a scheme ambiguity for momentum-type four vectors
00486   /// as to whether the pseudorapidity (a purely geometric concept) or the
00487   /// rapidity (a relativistic energy-momentum quantity) is to be used: this can
00488   /// be chosen via the optional scheme parameter, which is discouraged in this
00489   /// case since @c RAPIDITY is only a valid option for vectors whose type is
00490   /// really the FourMomentum derived class.
00491   inline double deltaR(const FourVector& a, const FourVector& b,
00492                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00493     switch (scheme) {
00494     case PSEUDORAPIDITY :
00495       return deltaR(a.vector3(), b.vector3());
00496     case RAPIDITY:
00497       {
00498         const FourMomentum* ma = dynamic_cast<const FourMomentum*>(&a);
00499         const FourMomentum* mb = dynamic_cast<const FourMomentum*>(&b);
00500         if (!ma || !mb) {
00501           string err = "deltaR with scheme RAPIDITY, can be called with FourMomenta only";
00502           throw std::runtime_error(err);
00503         }
00504         return deltaR(*ma, *mb, scheme);
00505       }
00506     default:
00507       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00508     }
00509   }
00510 
00511 
00512   inline double deltaR(const FourVector& v,
00513                        double eta2, double phi2,
00514                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00515     switch (scheme) {
00516     case PSEUDORAPIDITY :
00517       return deltaR(v.vector3(), eta2, phi2);
00518     case RAPIDITY:
00519       {
00520         const FourMomentum* mv = dynamic_cast<const FourMomentum*>(&v);
00521         if (!mv) {
00522           string err = "deltaR with scheme RAPIDITY, can be called with FourMomenta only";
00523           throw std::runtime_error(err);
00524         }
00525         return deltaR(*mv, eta2, phi2, scheme);
00526       }
00527     default:
00528       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00529     }
00530   }
00531 
00532 
00533   inline double deltaR(double eta1, double phi1,
00534                        const FourVector& v,
00535                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00536     switch (scheme) {
00537     case PSEUDORAPIDITY :
00538       return deltaR(eta1, phi1, v.vector3());
00539     case RAPIDITY:
00540       {
00541         const FourMomentum* mv = dynamic_cast<const FourMomentum*>(&v);
00542         if (!mv) {
00543           string err = "deltaR with scheme RAPIDITY, can be called with FourMomenta only";
00544           throw std::runtime_error(err);
00545         }
00546         return deltaR(eta1, phi1, *mv, scheme);
00547       }
00548     default:
00549       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00550     }
00551   }
00552 
00553 
00554   /// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two
00555   /// four-vectors. There is a scheme ambiguity for momentum-type four vectors
00556   /// as to whether the pseudorapidity (a purely geometric concept) or the
00557   /// rapidity (a relativistic energy-momentum quantity) is to be used: this can
00558   /// be chosen via the optional scheme parameter.
00559   inline double deltaR(const FourMomentum& a, const FourMomentum& b,
00560                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00561     switch (scheme) {
00562     case PSEUDORAPIDITY:
00563       return deltaR(a.vector3(), b.vector3());
00564     case RAPIDITY:
00565       return deltaR(a.rapidity(), a.azimuthalAngle(), b.rapidity(), b.azimuthalAngle());
00566     default:
00567       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00568     }
00569   }
00570 
00571   inline double deltaR(const FourMomentum& v,
00572                        double eta2, double phi2,
00573                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00574     switch (scheme) {
00575     case PSEUDORAPIDITY:
00576       return deltaR(v.vector3(), eta2, phi2);
00577     case RAPIDITY:
00578       return deltaR(v.rapidity(), v.azimuthalAngle(), eta2, phi2);
00579     default:
00580       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00581     }
00582   }
00583 
00584 
00585   inline double deltaR(double eta1, double phi1,
00586                        const FourMomentum& v,
00587                        DeltaRScheme scheme = PSEUDORAPIDITY) {
00588     switch (scheme) {
00589     case PSEUDORAPIDITY:
00590       return deltaR(eta1, phi1, v.vector3());
00591     case RAPIDITY:
00592       return deltaR(eta1, phi1, v.rapidity(), v.azimuthalAngle());
00593     default:
00594       throw std::runtime_error("The specified deltaR scheme is not yet implemented");
00595     }
00596   }
00597 
00598 
00599   //////////////////////////////////////////////////////
00600 
00601 
00602   /// Render a 4-vector as a string.
00603   inline const string toString(const FourVector& lv) {
00604     ostringstream out;
00605     out << "("  << (fabs(lv.t()) < 1E-30 ? 0.0 : lv.t())
00606         << "; " << (fabs(lv.x()) < 1E-30 ? 0.0 : lv.x())
00607         << ", " << (fabs(lv.y()) < 1E-30 ? 0.0 : lv.y())
00608         << ", " << (fabs(lv.z()) < 1E-30 ? 0.0 : lv.z())
00609         << ")";
00610     return out.str();
00611   }
00612 
00613   /// Write a 4-vector to an ostream.
00614   inline std::ostream& operator<<(std::ostream& out, const FourVector& lv) {
00615     out << toString(lv);
00616     return out;
00617   }
00618 
00619 
00620 }
00621 
00622 #endif