rivet is hosted by Hepforge, IPPP Durham
Rivet 4.0.0
MathUtils.hh
1// -*- C++ -*-
2#ifndef RIVET_MathUtils_HH
3#define RIVET_MathUtils_HH
4
5#include "Rivet/Math/MathConstants.hh"
6#include <type_traits>
7#include <cassert>
8
9namespace Rivet {
10
11
13
14
17
22 template <typename NUM>
23 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
24 isZero(NUM val, double tolerance=1e-8) {
25 return fabs(val) < tolerance;
26 }
27
32 template <typename NUM>
33 inline typename std::enable_if<std::is_integral<NUM>::value, bool>::type
34 isZero(NUM val, double=1e-5) { //< NB. unused tolerance parameter for ints, still needs a default value!
35 return val == 0;
36 }
37
39 template <typename NUM>
40 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
41 isNaN(NUM val) { return std::isnan(val); }
42
44 template <typename NUM>
45 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
46 notNaN(NUM val) { return !std::isnan(val); }
47
53 template <typename N1, typename N2>
54 inline typename std::enable_if<
55 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value &&
56 (std::is_floating_point<N1>::value || std::is_floating_point<N2>::value), bool>::type
57 fuzzyEquals(N1 a, N2 b, double tolerance=1e-5) {
58 const double absavg = (std::abs(a) + std::abs(b))/2.0;
59 const double absdiff = std::abs(a - b);
60 const bool rtn = (isZero(a) && isZero(b)) || absdiff < tolerance*absavg;
61 return rtn;
62 }
63
68 template <typename N1, typename N2>
69 inline typename std::enable_if<
70 std::is_integral<N1>::value && std::is_integral<N2>::value, bool>::type
71 fuzzyEquals(N1 a, N2 b, double) { //< NB. unused tolerance parameter for ints, still needs a default value!
72 return a == b;
73 }
74
75
79 template <typename N1, typename N2>
80 inline typename std::enable_if<
81 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value, bool>::type
82 fuzzyGtrEquals(N1 a, N2 b, double tolerance=1e-5) {
83 return a > b || fuzzyEquals(a, b, tolerance);
84 }
85
86
90 template <typename N1, typename N2>
91 inline typename std::enable_if<
92 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value, bool>::type
93 fuzzyLessEquals(N1 a, N2 b, double tolerance=1e-5) {
94 return a < b || fuzzyEquals(a, b, tolerance);
95 }
96
98 template <typename N1, typename N2>
99 inline typename std::enable_if<
100 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value,
101 typename std::common_type<N1,N2>::type >::type
102 min(N1 a, N2 b) {
103 return a > b ? b : a;
104 }
105
107 template <typename N1, typename N2>
108 inline typename std::enable_if<
109 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value,
110 typename std::common_type<N1,N2>::type >::type
111 max(N1 a, N2 b) {
112 return a > b ? a : b;
113 }
114
116
117
120
125 enum RangeBoundary { OPEN=0, SOFT=0, CLOSED=1, HARD=1 };
126
130 template <typename N1, typename N2, typename N3>
131 inline typename std::enable_if<
132 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
133 inRange(N1 value, N2 low, N3 high,
134 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
135 if (lowbound == OPEN && highbound == OPEN) {
136 return (value > low && value < high);
137 } else if (lowbound == OPEN && highbound == CLOSED) {
138 return (value > low && value <= high);
139 } else if (lowbound == CLOSED && highbound == OPEN) {
140 return (value >= low && value < high);
141 } else { // if (lowbound == CLOSED && highbound == CLOSED) {
142 return (value >= low && value <= high);
143 }
144 }
145
150 template <typename N1, typename N2, typename N3>
151 inline typename std::enable_if<
152 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
153 fuzzyInRange(N1 value, N2 low, N3 high,
154 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
155 if (lowbound == OPEN && highbound == OPEN) {
156 return (value > low && value < high);
157 } else if (lowbound == OPEN && highbound == CLOSED) {
158 return (value > low && fuzzyLessEquals(value, high));
159 } else if (lowbound == CLOSED && highbound == OPEN) {
160 return (fuzzyGtrEquals(value, low) && value < high);
161 } else { // if (lowbound == CLOSED && highbound == CLOSED) {
162 return (fuzzyGtrEquals(value, low) && fuzzyLessEquals(value, high));
163 }
164 }
165
167 template <typename N1, typename N2, typename N3>
168 inline typename std::enable_if<
169 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
170 inRange(N1 value, pair<N2, N3> lowhigh,
171 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
172 return inRange(value, lowhigh.first, lowhigh.second, lowbound, highbound);
173 }
174
175
176 // Alternative forms, with snake_case names and boundary types in names rather than as args -- from MCUtils
177
181 template <typename N1, typename N2, typename N3>
182 inline typename std::enable_if<
183 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
184 in_range(N1 val, N2 low, N3 high) {
185 return inRange(val, low, high, CLOSED, OPEN);
186 }
187
191 template <typename N1, typename N2, typename N3>
192 inline typename std::enable_if<
193 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
194 in_closed_range(N1 val, N2 low, N3 high) {
195 return inRange(val, low, high, CLOSED, CLOSED);
196 }
197
201 template <typename N1, typename N2, typename N3>
202 inline typename std::enable_if<
203 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
204 in_open_range(N1 val, N2 low, N3 high) {
205 return inRange(val, low, high, OPEN, OPEN);
206 }
207
209
211
212
215
217 template <typename NUM>
218 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
219 sqr(NUM a) {
220 return a*a;
221 }
222
227 // template <typename N1, typename N2>
228 template <typename NUM>
229 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
230 //std::common_type<N1, N2>::type
231 add_quad(NUM a, NUM b) {
232 return sqrt(a*a + b*b);
233 }
234
239 // template <typename N1, typename N2>
240 template <typename NUM>
241 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
242 //std::common_type<N1, N2, N3>::type
243 add_quad(NUM a, NUM b, NUM c) {
244 return sqrt(a*a + b*b + c*c);
245 }
246
249 inline double safediv(double num, double den, double fail=0.0) {
250 return (!isZero(den)) ? num/den : fail;
251 }
252
254 template <typename NUM>
255 constexpr inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
256 intpow(NUM val, unsigned int exp) {
257 if (exp == 0) return (NUM) 1;
258 else if (exp == 1) return val;
259 return val * intpow(val, exp-1);
260 }
261
263 template <typename NUM>
264 constexpr inline typename std::enable_if<std::is_arithmetic<NUM>::value, int>::type
265 sign(NUM val) {
266 if (isZero(val)) return ZERO;
267 const int valsign = (val > 0) ? PLUS : MINUS;
268 return valsign;
269 }
270
272
273
276
278 inline double cdfBW(double x, double mu, double gamma) {
279 // normalize to (0;1) distribution
280 const double xn = (x - mu)/gamma;
281 return std::atan(xn)/M_PI + 0.5;
282 }
283
285 inline double invcdfBW(double p, double mu, double gamma) {
286 const double xn = std::tan(M_PI*(p-0.5));
287 return gamma*xn + mu;
288 }
289
291
292
295
302 inline vector<double> linspace(size_t nbins, double start, double end, bool include_end=true) {
303 assert(nbins > 0);
304 vector<double> rtn;
305 const double interval = (end-start)/static_cast<double>(nbins);
306 for (size_t i = 0; i < nbins; ++i) {
307 rtn.push_back(start + i*interval);
308 }
309 assert(rtn.size() == nbins);
310 if (include_end) rtn.push_back(end); //< exact end, not result of n * interval
311 return rtn;
312 }
313
314
326 inline vector<double> aspace(double step, double start, double end, bool include_end=true, double tol=1e-2) {
327 assert( (end-start)*step > 0); //< ensure the step is going in the direction from start to end
328 vector<double> rtn;
329 double next = start;
330 while (true) {
331 if (next > end) break;
332 rtn.push_back(next);
333 next += step;
334 }
335 if (include_end) {
336 if (end - rtn[rtn.size()-1] > tol*step) rtn.push_back(end);
337 }
338 return rtn;
339 }
340
341
345 inline vector<double> fnspace(size_t nbins, double start, double end,
346 const std::function<double(double)>& fn, const std::function<double(double)>& invfn,
347 bool include_end=true) {
348 // assert(end >= start);
349 assert(nbins > 0);
350 const double pmin = fn(start);
351 const double pmax = fn(end);
352 const vector<double> edges = linspace(nbins, pmin, pmax, false);
353 assert(edges.size() == nbins);
354 vector<double> rtn; rtn.reserve(nbins+1);
355 rtn.push_back(start); //< exact start, not round-tripped
356 for (size_t i = 1; i < edges.size(); ++i) {
357 rtn.push_back(invfn(edges[i]));
358 }
359 assert(rtn.size() == nbins);
360 if (include_end) rtn.push_back(end); //< exact end
361 return rtn;
362 }
363
364
374 inline vector<double> logspace(size_t nbins, double start, double end, bool include_end=true) {
375 return fnspace(nbins, start, end,
376 [](double x){ return std::log(x); },
377 [](double x){ return std::exp(x); },
378 include_end);
379 }
380
381
391 inline vector<double> powspace(size_t nbins, double start, double end, double npow, bool include_end=true) {
392 assert(start >= 0); //< non-integer powers are complex for negative numbers... don't go there
393 return fnspace(nbins, start, end,
394 [&](double x){ return std::pow(x, npow); },
395 [&](double x){ return std::pow(x, 1/npow); },
396 include_end);
397 }
398
410 inline vector<double> powdbnspace(size_t nbins, double start, double end, double npow, bool include_end=true) {
411 assert(start >= 0); //< non-integer powers are complex for negative numbers... don't go there
412 return fnspace(nbins, start, end,
413 [&](double x){ return std::pow(x, npow+1) / (npow+1); },
414 [&](double x){ return std::pow((npow+1) * x, 1/(npow+1)); },
415 include_end);
416 }
417
418
426 inline vector<double> bwdbnspace(size_t nbins, double start, double end, double mu, double gamma, bool include_end=true) {
427 return fnspace(nbins, start, end,
428 [&](double x){ return cdfBW(x, mu, gamma); },
429 [&](double x){ return invcdfBW(x, mu, gamma); },
430 include_end);
431 }
432
433
435 template <typename NUM, typename CONTAINER>
436 inline typename std::enable_if<std::is_arithmetic<NUM>::value && std::is_arithmetic<typename CONTAINER::value_type>::value, int>::type
437 _binIndex(NUM val, const CONTAINER& binedges, bool allow_overflow=false) {
438 if (val < *begin(binedges)) return -1;
439 // CONTAINER::iterator_type itend =
440 if (val >= *(end(binedges)-1)) return allow_overflow ? int(binedges.size())-1 : -1;
441 auto it = std::upper_bound(begin(binedges), end(binedges), val);
442 return std::distance(begin(binedges), --it);
443 }
444
453 template <typename NUM1, typename NUM2>
454 inline typename std::enable_if<std::is_arithmetic<NUM1>::value && std::is_arithmetic<NUM2>::value, int>::type
455 binIndex(NUM1 val, std::initializer_list<NUM2> binedges, bool allow_overflow=false) {
456 return _binIndex(val, binedges, allow_overflow);
457 }
458
467 template <typename NUM, typename CONTAINER>
468 inline typename std::enable_if<std::is_arithmetic<NUM>::value && std::is_arithmetic<typename CONTAINER::value_type>::value, int>::type
469 binIndex(NUM val, const CONTAINER& binedges, bool allow_overflow=false) {
470 return _binIndex(val, binedges, allow_overflow);
471 }
472
474
475
478
481 template <typename NUM>
482 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
483 median(const vector<NUM>& sample) {
484 if (sample.empty()) throw RangeError("Can't compute median of an empty set");
485 vector<NUM> tmp = sample;
486 std::sort(tmp.begin(), tmp.end());
487 const size_t imid = tmp.size()/2; // len1->idx0, len2->idx1, len3->idx1, len4->idx2, ...
488 if (sample.size() % 2 == 0) return (tmp.at(imid-1) + tmp.at(imid)) / 2.0;
489 else return tmp.at(imid);
490 }
491
492
495 template <typename NUM>
496 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
497 mean(const vector<NUM>& sample) {
498 if (sample.empty()) throw RangeError("Can't compute mean of an empty set");
499 double mean = 0.0;
500 for (size_t i = 0; i < sample.size(); ++i) {
501 mean += sample[i];
502 }
503 return mean/sample.size();
504 }
505
506 // Calculate the error on the mean, assuming Poissonian errors
508 template <typename NUM>
509 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
510 mean_err(const vector<NUM>& sample) {
511 if (sample.empty()) throw RangeError("Can't compute mean_err of an empty set");
512 double mean_e = 0.0;
513 for (size_t i = 0; i < sample.size(); ++i) {
514 mean_e += sqrt(sample[i]);
515 }
516 return mean_e/sample.size();
517 }
518
519
522 template <typename NUM>
523 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
524 covariance(const vector<NUM>& sample1, const vector<NUM>& sample2) {
525 if (sample1.empty() || sample2.empty()) throw RangeError("Can't compute covariance of an empty set");
526 if (sample1.size() != sample2.size()) throw RangeError("Sizes of samples must be equal for covariance calculation");
527 const double mean1 = mean(sample1);
528 const double mean2 = mean(sample2);
529 const size_t N = sample1.size();
530 double cov = 0.0;
531 for (size_t i = 0; i < N; i++) {
532 const double cov_i = (sample1[i] - mean1)*(sample2[i] - mean2);
533 cov += cov_i;
534 }
535 if (N > 1) return cov/(N-1);
536 else return 0.0;
537 }
538
541 template <typename NUM>
542 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
543 covariance_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
544 if (sample1.empty() || sample2.empty()) throw RangeError("Can't compute covariance_err of an empty set");
545 if (sample1.size() != sample2.size()) throw RangeError("Sizes of samples must be equal for covariance_err calculation");
546 const double mean1 = mean(sample1);
547 const double mean2 = mean(sample2);
548 const double mean1_e = mean_err(sample1);
549 const double mean2_e = mean_err(sample2);
550 const size_t N = sample1.size();
551 double cov_e = 0.0;
552 for (size_t i = 0; i < N; i++) {
553 const double cov_i = (sqrt(sample1[i]) - mean1_e)*(sample2[i] - mean2) +
554 (sample1[i] - mean1)*(sqrt(sample2[i]) - mean2_e);
555 cov_e += cov_i;
556 }
557 if (N > 1) return cov_e/(N-1);
558 else return 0.0;
559 }
560
561
564 template <typename NUM>
565 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
566 correlation(const vector<NUM>& sample1, const vector<NUM>& sample2) {
567 const double cov = covariance(sample1, sample2);
568 const double var1 = covariance(sample1, sample1);
569 const double var2 = covariance(sample2, sample2);
570 const double correlation = cov/sqrt(var1*var2);
571 const double corr_strength = correlation*sqrt(var2/var1);
572 return corr_strength;
573 }
574
577 template <typename NUM>
578 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
579 correlation_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
580 const double cov = covariance(sample1, sample2);
581 const double var1 = covariance(sample1, sample1);
582 const double var2 = covariance(sample2, sample2);
583 const double cov_e = covariance_err(sample1, sample2);
584 const double var1_e = covariance_err(sample1, sample1);
585 const double var2_e = covariance_err(sample2, sample2);
586
587 // Calculate the correlation
588 const double correlation = cov/sqrt(var1*var2);
589 // Calculate the error on the correlation
590 const double correlation_err = cov_e/sqrt(var1*var2) -
591 cov/(2*pow(3./2., var1*var2)) * (var1_e * var2 + var1 * var2_e);
592
593 // Calculate the error on the correlation strength
594 const double corr_strength_err = correlation_err*sqrt(var2/var1) +
595 correlation/(2*sqrt(var2/var1)) * (var2_e/var1 - var2*var1_e/pow(2, var2));
596
597 return corr_strength_err;
598 }
599
601
602
605
610 inline double _mapAngleM2PITo2Pi(double angle) {
611 double rtn = fmod(angle, TWOPI);
612 if (isZero(rtn)) return 0;
613 assert(rtn >= -TWOPI && rtn <= TWOPI);
614 return rtn;
615 }
616
618 inline double mapAngleMPiToPi(double angle) {
619 double rtn = _mapAngleM2PITo2Pi(angle);
620 if (isZero(rtn)) return 0;
621 if (rtn > PI) rtn -= TWOPI;
622 if (rtn <= -PI) rtn += TWOPI;
623 assert(rtn > -PI && rtn <= PI);
624 return rtn;
625 }
626
628 inline double mapAngle0To2Pi(double angle) {
629 double rtn = _mapAngleM2PITo2Pi(angle);
630 if (isZero(rtn)) return 0;
631 if (rtn < 0) rtn += TWOPI;
632 if (rtn == TWOPI) rtn = 0;
633 assert(rtn >= 0 && rtn < TWOPI);
634 return rtn;
635 }
636
638 inline double mapAngle0ToPi(double angle) {
639 double rtn = fabs(mapAngleMPiToPi(angle));
640 if (isZero(rtn)) return 0;
641 assert(rtn > 0 && rtn <= PI);
642 return rtn;
643 }
644
646 inline double mapAngle(double angle, PhiMapping mapping) {
647 switch (mapping) {
648 case MINUSPI_PLUSPI:
649 return mapAngleMPiToPi(angle);
650 case ZERO_2PI:
651 return mapAngle0To2Pi(angle);
652 case ZERO_PI:
653 return mapAngle0To2Pi(angle);
654 default:
655 throw Rivet::UserError("The specified phi mapping scheme is not implemented");
656 }
657 }
658
660
661
664
668 inline double deltaPhi(double phi1, double phi2, bool sign=false) {
669 const double x = mapAngleMPiToPi(phi1 - phi2);
670 return sign ? x : fabs(x);
671 }
672
676 inline double deltaEta(double eta1, double eta2, bool sign=false) {
677 const double x = eta1 - eta2;
678 return sign ? x : fabs(x);
679 }
680
684 inline double deltaRap(double y1, double y2, bool sign=false) {
685 const double x = y1 - y2;
686 return sign? x : fabs(x);
687 }
688
691 inline double deltaR2(double rap1, double phi1, double rap2, double phi2) {
692 const double dphi = deltaPhi(phi1, phi2);
693 return sqr(rap1-rap2) + sqr(dphi);
694 }
695
698 inline double deltaR(double rap1, double phi1, double rap2, double phi2) {
699 return sqrt(deltaR2(rap1, phi1, rap2, phi2));
700 }
701
703 inline double rapidity(double E, double pz) {
704 if (isZero(E - pz)) {
705 throw std::runtime_error("Divergent positive rapidity");
706 return DBL_MAX;
707 }
708 if (isZero(E + pz)) {
709 throw std::runtime_error("Divergent negative rapidity");
710 return -DBL_MAX;
711 }
712 return 0.5*log((E+pz)/(E-pz));
713 }
714
716
717
720 inline double mT(double pT1, double pT2, double dphi) {
721 return sqrt(2*pT1*pT2 * (1 - cos(dphi)) );
722 }
723
724
725}
726
727
728#endif
Definition MC_CENT_PPB_Projections.hh:10
double deltaR(double rap1, double phi1, double rap2, double phi2)
Definition MathUtils.hh:698
double deltaPhi(double phi1, double phi2, bool sign=false)
Calculate the difference between two angles in radians.
Definition MathUtils.hh:668
vector< double > aspace(double step, double start, double end, bool include_end=true, double tol=1e-2)
Make a list of values equally spaced by step between start and end inclusive.
Definition MathUtils.hh:326
double deltaEta(double eta1, double eta2, bool sign=false)
Definition MathUtils.hh:676
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition MathUtils.hh:184
PhiMapping
Enum for range of to be mapped into.
Definition MathConstants.hh:49
vector< double > logspace(size_t nbins, double start, double end, bool include_end=true)
Make a list of nbins + 1 values exponentially spaced between start and end inclusive.
Definition MathUtils.hh:374
constexpr std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type intpow(NUM val, unsigned int exp)
A more efficient version of pow for raising numbers to integer powers.
Definition MathUtils.hh:256
std::enable_if< std::is_floating_point< NUM >::value, bool >::type notNaN(NUM val)
Check if a number is non-NaN.
Definition MathUtils.hh:46
double mapAngle0To2Pi(double angle)
Map an angle into the range [0, 2PI).
Definition MathUtils.hh:628
std::enable_if< std::is_arithmetic< NUM >::value, double >::type correlation_err(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition MathUtils.hh:579
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_closed_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition MathUtils.hh:194
static const double TWOPI
A pre-defined value of .
Definition MathConstants.hh:16
std::enable_if< std::is_arithmetic< NUM >::value, double >::type covariance_err(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition MathUtils.hh:543
double deltaR2(double rap1, double phi1, double rap2, double phi2)
Definition MathUtils.hh:691
double mT(double pT1, double pT2, double dphi)
Definition MathUtils.hh:720
std::enable_if< std::is_arithmetic< NUM >::value, double >::type mean_err(const vector< NUM > &sample)
Definition MathUtils.hh:510
std::enable_if< std::is_arithmetic< NUM >::value, double >::type covariance(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition MathUtils.hh:524
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, typenamestd::common_type< N1, N2 >::type >::type max(N1 a, N2 b)
Get the maximum of two numbers.
Definition MathUtils.hh:111
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type add_quad(NUM a, NUM b)
Named number-type addition in quadrature operation.
Definition MathUtils.hh:231
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type fuzzyInRange(N1 value, N2 low, N3 high, RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN)
Determine if value is in the range low to high, for floating point numbers.
Definition MathUtils.hh:153
std::enable_if< std::is_floating_point< NUM >::value, bool >::type isNaN(NUM val)
Check if a number is NaN.
Definition MathUtils.hh:41
vector< double > fnspace(size_t nbins, double start, double end, const std::function< double(double)> &fn, const std::function< double(double)> &invfn, bool include_end=true)
Definition MathUtils.hh:345
constexpr std::enable_if< std::is_arithmetic< NUM >::value, int >::type sign(NUM val)
Find the sign of a number.
Definition MathUtils.hh:265
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, typenamestd::common_type< N1, N2 >::type >::type min(N1 a, N2 b)
Get the minimum of two numbers.
Definition MathUtils.hh:102
double mapAngleMPiToPi(double angle)
Map an angle into the range (-PI, PI].
Definition MathUtils.hh:618
std::enable_if< std::is_arithmetic< NUM1 >::value &&std::is_arithmetic< NUM2 >::value, int >::type binIndex(NUM1 val, std::initializer_list< NUM2 > binedges, bool allow_overflow=false)
Return the bin index of the given value, val, given a vector of bin edges.
Definition MathUtils.hh:455
RangeBoundary
Definition MathUtils.hh:125
std::enable_if< std::is_arithmetic< NUM >::value, double >::type correlation(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition MathUtils.hh:566
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type inRange(N1 value, N2 low, N3 high, RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN)
Determine if value is in the range low to high, for floating point numbers.
Definition MathUtils.hh:133
static const double PI
Definition MathConstants.hh:13
std::enable_if< std::is_arithmetic< NUM >::value, double >::type mean(const vector< NUM > &sample)
Definition MathUtils.hh:497
vector< double > powspace(size_t nbins, double start, double end, double npow, bool include_end=true)
Make a list of nbins + 1 values power-law spaced between start and end inclusive.
Definition MathUtils.hh:391
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, bool >::type fuzzyLessEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two floating point numbers for <= with a degree of fuzziness.
Definition MathUtils.hh:93
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&(std::is_floating_point< N1 >::value||std::is_floating_point< N2 >::value), bool >::type fuzzyEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two numbers for equality with a degree of fuzziness.
Definition MathUtils.hh:57
double cdfBW(double x, double mu, double gamma)
CDF for the Breit-Wigner distribution.
Definition MathUtils.hh:278
double safediv(double num, double den, double fail=0.0)
Definition MathUtils.hh:249
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type median(const vector< NUM > &sample)
Definition MathUtils.hh:483
double deltaRap(double y1, double y2, bool sign=false)
Definition MathUtils.hh:684
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_open_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition MathUtils.hh:204
double mapAngle(double angle, PhiMapping mapping)
Map an angle into the enum-specified range.
Definition MathUtils.hh:646
vector< double > linspace(size_t nbins, double start, double end, bool include_end=true)
Make a list of nbins + 1 values equally spaced between start and end inclusive.
Definition MathUtils.hh:302
double mapAngle0ToPi(double angle)
Map an angle into the range [0, PI].
Definition MathUtils.hh:638
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type sqr(NUM a)
Named number-type squaring operation.
Definition MathUtils.hh:219
double invcdfBW(double p, double mu, double gamma)
Inverse CDF for the Breit-Wigner distribution.
Definition MathUtils.hh:285
std::enable_if< std::is_floating_point< NUM >::value, bool >::type isZero(NUM val, double tolerance=1e-8)
Compare a number to zero.
Definition MathUtils.hh:24
double angle(const Vector2 &a, const Vector2 &b)
Angle (in radians) between two 2-vectors.
Definition Vector2.hh:177
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, bool >::type fuzzyGtrEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two numbers for >= with a degree of fuzziness.
Definition MathUtils.hh:82
vector< double > powdbnspace(size_t nbins, double start, double end, double npow, bool include_end=true)
Make a list of nbins + 1 values equally spaced in the CDF of x^n between start and end inclusive.
Definition MathUtils.hh:410
vector< double > bwdbnspace(size_t nbins, double start, double end, double mu, double gamma, bool include_end=true)
Make a list of nbins + 1 values spaced for equal area Breit-Wigner binning between start and end incl...
Definition MathUtils.hh:426
double rapidity(double E, double pz)
Calculate a rapidity value from the supplied energy E and longitudinal momentum pz.
Definition MathUtils.hh:703
Error for e.g. use of invalid bin ranges.
Definition Exceptions.hh:22
Error specialisation for where the problem is between the chair and the computer.
Definition Exceptions.hh:55