rivet is hosted by Hepforge, IPPP Durham
Rivet 3.1.6
MathUtils.hh
1// -*- C++ -*-
2#ifndef RIVET_MathUtils_HH
3#define RIVET_MathUtils_HH
4
5#include "Rivet/Math/MathConstants.hh"
6#include <type_traits>
7#include <cassert>
8
9namespace Rivet {
10
11
13
14
16
17
22 template <typename NUM>
23 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
24 isZero(NUM val, double tolerance=1e-8) {
25 return fabs(val) < tolerance;
26 }
27
32 template <typename NUM>
33 inline typename std::enable_if<std::is_integral<NUM>::value, bool>::type
34 isZero(NUM val, double=1e-5) { //< NB. unused tolerance parameter for ints, still needs a default value!
35 return val == 0;
36 }
37
39 template <typename NUM>
40 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
41 isNaN(NUM val) { return std::isnan(val); }
42
44 template <typename NUM>
45 inline typename std::enable_if<std::is_floating_point<NUM>::value, bool>::type
46 notNaN(NUM val) { return !std::isnan(val); }
47
53 template <typename N1, typename N2>
54 inline typename std::enable_if<
55 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value &&
56 (std::is_floating_point<N1>::value || std::is_floating_point<N2>::value), bool>::type
57 fuzzyEquals(N1 a, N2 b, double tolerance=1e-5) {
58 const double absavg = (std::abs(a) + std::abs(b))/2.0;
59 const double absdiff = std::abs(a - b);
60 const bool rtn = (isZero(a) && isZero(b)) || absdiff < tolerance*absavg;
61 return rtn;
62 }
63
68 template <typename N1, typename N2>
69 inline typename std::enable_if<
70 std::is_integral<N1>::value && std::is_integral<N2>::value, bool>::type
71 fuzzyEquals(N1 a, N2 b, double) { //< NB. unused tolerance parameter for ints, still needs a default value!
72 return a == b;
73 }
74
75
79 template <typename N1, typename N2>
80 inline typename std::enable_if<
81 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value, bool>::type
82 fuzzyGtrEquals(N1 a, N2 b, double tolerance=1e-5) {
83 return a > b || fuzzyEquals(a, b, tolerance);
84 }
85
86
90 template <typename N1, typename N2>
91 inline typename std::enable_if<
92 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value, bool>::type
93 fuzzyLessEquals(N1 a, N2 b, double tolerance=1e-5) {
94 return a < b || fuzzyEquals(a, b, tolerance);
95 }
96
98 template <typename N1, typename N2>
99 inline typename std::enable_if<
100 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value,
101 typename std::common_type<N1,N2>::type >::type
102 min(N1 a, N2 b) {
103 return a > b ? b : a;
104 }
105
107 template <typename N1, typename N2>
108 inline typename std::enable_if<
109 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value,
110 typename std::common_type<N1,N2>::type >::type
111 max(N1 a, N2 b) {
112 return a > b ? a : b;
113 }
114
116
117
119
120
125 enum RangeBoundary { OPEN=0, SOFT=0, CLOSED=1, HARD=1 };
126
130 template <typename N1, typename N2, typename N3>
131 inline typename std::enable_if<
132 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
133 inRange(N1 value, N2 low, N3 high,
134 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
135 if (lowbound == OPEN && highbound == OPEN) {
136 return (value > low && value < high);
137 } else if (lowbound == OPEN && highbound == CLOSED) {
138 return (value > low && value <= high);
139 } else if (lowbound == CLOSED && highbound == OPEN) {
140 return (value >= low && value < high);
141 } else { // if (lowbound == CLOSED && highbound == CLOSED) {
142 return (value >= low && value <= high);
143 }
144 }
145
150 template <typename N1, typename N2, typename N3>
151 inline typename std::enable_if<
152 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
153 fuzzyInRange(N1 value, N2 low, N3 high,
154 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
155 if (lowbound == OPEN && highbound == OPEN) {
156 return (value > low && value < high);
157 } else if (lowbound == OPEN && highbound == CLOSED) {
158 return (value > low && fuzzyLessEquals(value, high));
159 } else if (lowbound == CLOSED && highbound == OPEN) {
160 return (fuzzyGtrEquals(value, low) && value < high);
161 } else { // if (lowbound == CLOSED && highbound == CLOSED) {
162 return (fuzzyGtrEquals(value, low) && fuzzyLessEquals(value, high));
163 }
164 }
165
167 template <typename N1, typename N2, typename N3>
168 inline typename std::enable_if<
169 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
170 inRange(N1 value, pair<N2, N3> lowhigh,
171 RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
172 return inRange(value, lowhigh.first, lowhigh.second, lowbound, highbound);
173 }
174
175
176 // Alternative forms, with snake_case names and boundary types in names rather than as args -- from MCUtils
177
181 template <typename N1, typename N2, typename N3>
182 inline typename std::enable_if<
183 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
184 in_range(N1 val, N2 low, N3 high) {
185 return inRange(val, low, high, CLOSED, OPEN);
186 }
187
191 template <typename N1, typename N2, typename N3>
192 inline typename std::enable_if<
193 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
194 in_closed_range(N1 val, N2 low, N3 high) {
195 return inRange(val, low, high, CLOSED, CLOSED);
196 }
197
201 template <typename N1, typename N2, typename N3>
202 inline typename std::enable_if<
203 std::is_arithmetic<N1>::value && std::is_arithmetic<N2>::value && std::is_arithmetic<N3>::value, bool>::type
204 in_open_range(N1 val, N2 low, N3 high) {
205 return inRange(val, low, high, OPEN, OPEN);
206 }
207
209
211
212
214
215
217 template <typename NUM>
218 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
219 sqr(NUM a) {
220 return a*a;
221 }
222
227 // template <typename N1, typename N2>
228 template <typename NUM>
229 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
230 //std::common_type<N1, N2>::type
231 add_quad(NUM a, NUM b) {
232 return sqrt(a*a + b*b);
233 }
234
239 // template <typename N1, typename N2>
240 template <typename NUM>
241 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
242 //std::common_type<N1, N2, N3>::type
243 add_quad(NUM a, NUM b, NUM c) {
244 return sqrt(a*a + b*b + c*c);
245 }
246
249 inline double safediv(double num, double den, double fail=0.0) {
250 return (!isZero(den)) ? num/den : fail;
251 }
252
254 template <typename NUM>
255 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
256 intpow(NUM val, unsigned int exp) {
257 assert(exp >= 0);
258 if (exp == 0) return (NUM) 1;
259 else if (exp == 1) return val;
260 return val * intpow(val, exp-1);
261 }
262
264 template <typename NUM>
265 inline typename std::enable_if<std::is_arithmetic<NUM>::value, int>::type
266 sign(NUM val) {
267 if (isZero(val)) return ZERO;
268 const int valsign = (val > 0) ? PLUS : MINUS;
269 return valsign;
270 }
271
273
274
276
277
279 inline double cdfBW(double x, double mu, double gamma) {
280 // normalize to (0;1) distribution
281 const double xn = (x - mu)/gamma;
282 return std::atan(xn)/M_PI + 0.5;
283 }
284
286 inline double invcdfBW(double p, double mu, double gamma) {
287 const double xn = std::tan(M_PI*(p-0.5));
288 return gamma*xn + mu;
289 }
290
292
293
295
296
303 inline vector<double> linspace(size_t nbins, double start, double end, bool include_end=true) {
304 assert(end >= start);
305 assert(nbins > 0);
306 vector<double> rtn;
307 const double interval = (end-start)/static_cast<double>(nbins);
308 for (size_t i = 0; i < nbins; ++i) {
309 rtn.push_back(start + i*interval);
310 }
311 assert(rtn.size() == nbins);
312 if (include_end) rtn.push_back(end); //< exact end, not result of n * interval
313 return rtn;
314 }
315
316
326 inline vector<double> aspace(double step, double start, double end, bool include_end=true, double tol=1e-2) {
327 assert(end >= start);
328 assert(step > 0);
329 vector<double> rtn;
330 double next = start;
331 while (true) {
332 if (next > end) break;
333 rtn.push_back(next);
334 next += step;
335 }
336 if (include_end) {
337 if (end - rtn[rtn.size()-1] > tol*step) rtn.push_back(end);
338 }
339 return rtn;
340 }
341
342
350 inline vector<double> logspace(size_t nbins, double start, double end, bool include_end=true) {
351 assert(end >= start);
352 assert(start > 0);
353 assert(nbins > 0);
354 const double logstart = std::log(start);
355 const double logend = std::log(end);
356 const vector<double> logvals = linspace(nbins, logstart, logend, false);
357 assert(logvals.size() == nbins);
358 vector<double> rtn; rtn.reserve(nbins+1);
359 rtn.push_back(start); //< exact start, not exp(log(start))
360 for (size_t i = 1; i < logvals.size(); ++i) {
361 rtn.push_back(std::exp(logvals[i]));
362 }
363 assert(rtn.size() == nbins);
364 if (include_end) rtn.push_back(end); //< exact end, not exp(n * loginterval)
365 return rtn;
366 }
367
368
370
371
379 inline vector<double> bwspace(size_t nbins, double start, double end, double mu, double gamma) {
380 assert(end >= start);
381 assert(nbins > 0);
382 const double pmin = cdfBW(start, mu, gamma);
383 const double pmax = cdfBW(end, mu, gamma);
384 const vector<double> edges = linspace(nbins, pmin, pmax);
385 assert(edges.size() == nbins+1);
386 vector<double> rtn;
387 for (double edge : edges) {
388 rtn.push_back(invcdfBW(edge, mu, gamma));
389 }
390 assert(rtn.size() == nbins+1);
391 return rtn;
392 }
393
394
396 template <typename NUM, typename CONTAINER>
397 inline typename std::enable_if<std::is_arithmetic<NUM>::value && std::is_arithmetic<typename CONTAINER::value_type>::value, int>::type
398 _binIndex(NUM val, const CONTAINER& binedges, bool allow_overflow=false) {
399 if (val < *begin(binedges)) return -1;
400 // CONTAINER::iterator_type itend =
401 if (val >= *(end(binedges)-1)) return allow_overflow ? int(binedges.size())-1 : -1;
402 auto it = std::upper_bound(begin(binedges), end(binedges), val);
403 return std::distance(begin(binedges), --it);
404 }
405
414 template <typename NUM1, typename NUM2>
415 inline typename std::enable_if<std::is_arithmetic<NUM1>::value && std::is_arithmetic<NUM2>::value, int>::type
416 binIndex(NUM1 val, std::initializer_list<NUM2> binedges, bool allow_overflow=false) {
417 return _binIndex(val, binedges, allow_overflow);
418 }
419
428 template <typename NUM, typename CONTAINER>
429 inline typename std::enable_if<std::is_arithmetic<NUM>::value && std::is_arithmetic<typename CONTAINER::value_type>::value, int>::type
430 binIndex(NUM val, const CONTAINER& binedges, bool allow_overflow=false) {
431 return _binIndex(val, binedges, allow_overflow);
432 }
433
435
436
438
439
442 template <typename NUM>
443 inline typename std::enable_if<std::is_arithmetic<NUM>::value, NUM>::type
444 median(const vector<NUM>& sample) {
445 if (sample.empty()) throw RangeError("Can't compute median of an empty set");
446 vector<NUM> tmp = sample;
447 std::sort(tmp.begin(), tmp.end());
448 const size_t imid = tmp.size()/2; // len1->idx0, len2->idx1, len3->idx1, len4->idx2, ...
449 if (sample.size() % 2 == 0) return (tmp.at(imid-1) + tmp.at(imid)) / 2.0;
450 else return tmp.at(imid);
451 }
452
453
456 template <typename NUM>
457 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
458 mean(const vector<NUM>& sample) {
459 if (sample.empty()) throw RangeError("Can't compute mean of an empty set");
460 double mean = 0.0;
461 for (size_t i = 0; i < sample.size(); ++i) {
462 mean += sample[i];
463 }
464 return mean/sample.size();
465 }
466
467 // Calculate the error on the mean, assuming Poissonian errors
469 template <typename NUM>
470 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
471 mean_err(const vector<NUM>& sample) {
472 if (sample.empty()) throw RangeError("Can't compute mean_err of an empty set");
473 double mean_e = 0.0;
474 for (size_t i = 0; i < sample.size(); ++i) {
475 mean_e += sqrt(sample[i]);
476 }
477 return mean_e/sample.size();
478 }
479
480
483 template <typename NUM>
484 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
485 covariance(const vector<NUM>& sample1, const vector<NUM>& sample2) {
486 if (sample1.empty() || sample2.empty()) throw RangeError("Can't compute covariance of an empty set");
487 if (sample1.size() != sample2.size()) throw RangeError("Sizes of samples must be equal for covariance calculation");
488 const double mean1 = mean(sample1);
489 const double mean2 = mean(sample2);
490 const size_t N = sample1.size();
491 double cov = 0.0;
492 for (size_t i = 0; i < N; i++) {
493 const double cov_i = (sample1[i] - mean1)*(sample2[i] - mean2);
494 cov += cov_i;
495 }
496 if (N > 1) return cov/(N-1);
497 else return 0.0;
498 }
499
502 template <typename NUM>
503 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
504 covariance_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
505 if (sample1.empty() || sample2.empty()) throw RangeError("Can't compute covariance_err of an empty set");
506 if (sample1.size() != sample2.size()) throw RangeError("Sizes of samples must be equal for covariance_err calculation");
507 const double mean1 = mean(sample1);
508 const double mean2 = mean(sample2);
509 const double mean1_e = mean_err(sample1);
510 const double mean2_e = mean_err(sample2);
511 const size_t N = sample1.size();
512 double cov_e = 0.0;
513 for (size_t i = 0; i < N; i++) {
514 const double cov_i = (sqrt(sample1[i]) - mean1_e)*(sample2[i] - mean2) +
515 (sample1[i] - mean1)*(sqrt(sample2[i]) - mean2_e);
516 cov_e += cov_i;
517 }
518 if (N > 1) return cov_e/(N-1);
519 else return 0.0;
520 }
521
522
525 template <typename NUM>
526 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
527 correlation(const vector<NUM>& sample1, const vector<NUM>& sample2) {
528 const double cov = covariance(sample1, sample2);
529 const double var1 = covariance(sample1, sample1);
530 const double var2 = covariance(sample2, sample2);
531 const double correlation = cov/sqrt(var1*var2);
532 const double corr_strength = correlation*sqrt(var2/var1);
533 return corr_strength;
534 }
535
538 template <typename NUM>
539 inline typename std::enable_if<std::is_arithmetic<NUM>::value, double>::type
540 correlation_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
541 const double cov = covariance(sample1, sample2);
542 const double var1 = covariance(sample1, sample1);
543 const double var2 = covariance(sample2, sample2);
544 const double cov_e = covariance_err(sample1, sample2);
545 const double var1_e = covariance_err(sample1, sample1);
546 const double var2_e = covariance_err(sample2, sample2);
547
548 // Calculate the correlation
549 const double correlation = cov/sqrt(var1*var2);
550 // Calculate the error on the correlation
551 const double correlation_err = cov_e/sqrt(var1*var2) -
552 cov/(2*pow(3./2., var1*var2)) * (var1_e * var2 + var1 * var2_e);
553
554 // Calculate the error on the correlation strength
555 const double corr_strength_err = correlation_err*sqrt(var2/var1) +
556 correlation/(2*sqrt(var2/var1)) * (var2_e/var1 - var2*var1_e/pow(2, var2));
557
558 return corr_strength_err;
559 }
560
562
563
565
566
571 inline double _mapAngleM2PITo2Pi(double angle) {
572 double rtn = fmod(angle, TWOPI);
573 if (isZero(rtn)) return 0;
574 assert(rtn >= -TWOPI && rtn <= TWOPI);
575 return rtn;
576 }
577
579 inline double mapAngleMPiToPi(double angle) {
580 double rtn = _mapAngleM2PITo2Pi(angle);
581 if (isZero(rtn)) return 0;
582 if (rtn > PI) rtn -= TWOPI;
583 if (rtn <= -PI) rtn += TWOPI;
584 assert(rtn > -PI && rtn <= PI);
585 return rtn;
586 }
587
589 inline double mapAngle0To2Pi(double angle) {
590 double rtn = _mapAngleM2PITo2Pi(angle);
591 if (isZero(rtn)) return 0;
592 if (rtn < 0) rtn += TWOPI;
593 if (rtn == TWOPI) rtn = 0;
594 assert(rtn >= 0 && rtn < TWOPI);
595 return rtn;
596 }
597
599 inline double mapAngle0ToPi(double angle) {
600 double rtn = fabs(mapAngleMPiToPi(angle));
601 if (isZero(rtn)) return 0;
602 assert(rtn > 0 && rtn <= PI);
603 return rtn;
604 }
605
607 inline double mapAngle(double angle, PhiMapping mapping) {
608 switch (mapping) {
609 case MINUSPI_PLUSPI:
610 return mapAngleMPiToPi(angle);
611 case ZERO_2PI:
612 return mapAngle0To2Pi(angle);
613 case ZERO_PI:
614 return mapAngle0To2Pi(angle);
615 default:
616 throw Rivet::UserError("The specified phi mapping scheme is not implemented");
617 }
618 }
619
621
622
624
625
629 inline double deltaPhi(double phi1, double phi2, bool sign=false) {
630 const double x = mapAngleMPiToPi(phi1 - phi2);
631 return sign ? x : fabs(x);
632 }
633
637 inline double deltaEta(double eta1, double eta2, bool sign=false) {
638 const double x = eta1 - eta2;
639 return sign ? x : fabs(x);
640 }
641
645 inline double deltaRap(double y1, double y2, bool sign=false) {
646 const double x = y1 - y2;
647 return sign? x : fabs(x);
648 }
649
652 inline double deltaR2(double rap1, double phi1, double rap2, double phi2) {
653 const double dphi = deltaPhi(phi1, phi2);
654 return sqr(rap1-rap2) + sqr(dphi);
655 }
656
659 inline double deltaR(double rap1, double phi1, double rap2, double phi2) {
660 return sqrt(deltaR2(rap1, phi1, rap2, phi2));
661 }
662
664 inline double rapidity(double E, double pz) {
665 if (isZero(E - pz)) {
666 throw std::runtime_error("Divergent positive rapidity");
667 return DBL_MAX;
668 }
669 if (isZero(E + pz)) {
670 throw std::runtime_error("Divergent negative rapidity");
671 return -DBL_MAX;
672 }
673 return 0.5*log((E+pz)/(E-pz));
674 }
675
677
678
681 inline double mT(double pT1, double pT2, double dphi) {
682 return sqrt(2*pT1*pT2 * (1 - cos(dphi)) );
683 }
684
685
686}
687
688
689#endif
double p(const ParticleBase &p)
Unbound function access to p.
Definition: ParticleBaseUtils.hh:653
Definition: MC_Cent_pPb.hh:10
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type intpow(NUM val, unsigned int exp)
A more efficient version of pow for raising numbers to integer powers.
Definition: MathUtils.hh:256
double deltaR(double rap1, double phi1, double rap2, double phi2)
Definition: MathUtils.hh:659
double deltaPhi(double phi1, double phi2, bool sign=false)
Calculate the difference between two angles in radians.
Definition: MathUtils.hh:629
vector< double > aspace(double step, double start, double end, bool include_end=true, double tol=1e-2)
Make a list of values equally spaced by step between start and end inclusive.
Definition: MathUtils.hh:326
double deltaEta(double eta1, double eta2, bool sign=false)
Definition: MathUtils.hh:637
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition: MathUtils.hh:184
PhiMapping
Enum for range of to be mapped into.
Definition: MathConstants.hh:49
vector< double > logspace(size_t nbins, double start, double end, bool include_end=true)
Make a list of nbins + 1 values exponentially spaced between start and end inclusive.
Definition: MathUtils.hh:350
std::enable_if< std::is_floating_point< NUM >::value, bool >::type notNaN(NUM val)
Check if a number is non-NaN.
Definition: MathUtils.hh:46
double mapAngle0To2Pi(double angle)
Map an angle into the range [0, 2PI).
Definition: MathUtils.hh:589
std::enable_if< std::is_arithmetic< NUM >::value, double >::type correlation_err(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition: MathUtils.hh:540
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_closed_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition: MathUtils.hh:194
vector< double > bwspace(size_t nbins, double start, double end, double mu, double gamma)
Make a list of nbins + 1 values spaced for equal area Breit-Wigner binning between start and end incl...
Definition: MathUtils.hh:379
static const double TWOPI
A pre-defined value of .
Definition: MathConstants.hh:16
std::enable_if< std::is_arithmetic< NUM >::value, double >::type covariance_err(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition: MathUtils.hh:504
double deltaR2(double rap1, double phi1, double rap2, double phi2)
Definition: MathUtils.hh:652
double mT(double pT1, double pT2, double dphi)
Definition: MathUtils.hh:681
std::enable_if< std::is_arithmetic< NUM >::value, double >::type mean_err(const vector< NUM > &sample)
Definition: MathUtils.hh:471
std::enable_if< std::is_arithmetic< NUM >::value, double >::type covariance(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition: MathUtils.hh:485
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, typenamestd::common_type< N1, N2 >::type >::type max(N1 a, N2 b)
Get the maximum of two numbers.
Definition: MathUtils.hh:111
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type add_quad(NUM a, NUM b)
Named number-type addition in quadrature operation.
Definition: MathUtils.hh:231
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type fuzzyInRange(N1 value, N2 low, N3 high, RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN)
Determine if value is in the range low to high, for floating point numbers.
Definition: MathUtils.hh:153
std::enable_if< std::is_floating_point< NUM >::value, bool >::type isNaN(NUM val)
Check if a number is NaN.
Definition: MathUtils.hh:41
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, typenamestd::common_type< N1, N2 >::type >::type min(N1 a, N2 b)
Get the minimum of two numbers.
Definition: MathUtils.hh:102
double mapAngleMPiToPi(double angle)
Map an angle into the range (-PI, PI].
Definition: MathUtils.hh:579
std::enable_if< std::is_arithmetic< NUM1 >::value &&std::is_arithmetic< NUM2 >::value, int >::type binIndex(NUM1 val, std::initializer_list< NUM2 > binedges, bool allow_overflow=false)
Return the bin index of the given value, val, given a vector of bin edges.
Definition: MathUtils.hh:416
RangeBoundary
Definition: MathUtils.hh:125
std::enable_if< std::is_arithmetic< NUM >::value, double >::type correlation(const vector< NUM > &sample1, const vector< NUM > &sample2)
Definition: MathUtils.hh:527
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type inRange(N1 value, N2 low, N3 high, RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN)
Determine if value is in the range low to high, for floating point numbers.
Definition: MathUtils.hh:133
static const double PI
Definition: MathConstants.hh:13
std::enable_if< std::is_arithmetic< NUM >::value, double >::type mean(const vector< NUM > &sample)
Definition: MathUtils.hh:458
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, bool >::type fuzzyLessEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two floating point numbers for <= with a degree of fuzziness.
Definition: MathUtils.hh:93
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&(std::is_floating_point< N1 >::value||std::is_floating_point< N2 >::value), bool >::type fuzzyEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two numbers for equality with a degree of fuzziness.
Definition: MathUtils.hh:57
double cdfBW(double x, double mu, double gamma)
CDF for the Breit-Wigner distribution.
Definition: MathUtils.hh:279
double safediv(double num, double den, double fail=0.0)
Definition: MathUtils.hh:249
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type median(const vector< NUM > &sample)
Definition: MathUtils.hh:444
double deltaRap(double y1, double y2, bool sign=false)
Definition: MathUtils.hh:645
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value &&std::is_arithmetic< N3 >::value, bool >::type in_open_range(N1 val, N2 low, N3 high)
Boolean function to determine if value is within the given range.
Definition: MathUtils.hh:204
std::enable_if< std::is_arithmetic< NUM >::value, int >::type sign(NUM val)
Find the sign of a number.
Definition: MathUtils.hh:266
double mapAngle(double angle, PhiMapping mapping)
Map an angle into the enum-specified range.
Definition: MathUtils.hh:607
vector< double > linspace(size_t nbins, double start, double end, bool include_end=true)
Make a list of nbins + 1 values equally spaced between start and end inclusive.
Definition: MathUtils.hh:303
double mapAngle0ToPi(double angle)
Map an angle into the range [0, PI].
Definition: MathUtils.hh:599
std::enable_if< std::is_arithmetic< NUM >::value, NUM >::type sqr(NUM a)
Named number-type squaring operation.
Definition: MathUtils.hh:219
double invcdfBW(double p, double mu, double gamma)
Inverse CDF for the Breit-Wigner distribution.
Definition: MathUtils.hh:286
std::enable_if< std::is_floating_point< NUM >::value, bool >::type isZero(NUM val, double tolerance=1e-8)
Compare a number to zero.
Definition: MathUtils.hh:24
double angle(const Vector2 &a, const Vector2 &b)
Angle (in radians) between two 2-vectors.
Definition: Vector2.hh:177
std::enable_if< std::is_arithmetic< N1 >::value &&std::is_arithmetic< N2 >::value, bool >::type fuzzyGtrEquals(N1 a, N2 b, double tolerance=1e-5)
Compare two numbers for >= with a degree of fuzziness.
Definition: MathUtils.hh:82
double rapidity(double E, double pz)
Calculate a rapidity value from the supplied energy E and longitudinal momentum pz.
Definition: MathUtils.hh:664
Error for e.g. use of invalid bin ranges.
Definition: Exceptions.hh:22
Error specialisation for where the problem is between the chair and the computer.
Definition: Exceptions.hh:55