rivet is hosted by Hepforge, IPPP Durham
ATLAS_2014_I1307243.cc
Go to the documentation of this file.
00001 // -*- C++ -*-
00002 #include "Rivet/Analysis.hh"
00003 #include "Rivet/Tools/Logging.hh"
00004 #include "Rivet/Projections/FastJets.hh"
00005 #include "Rivet/Tools/BinnedHistogram.hh"
00006 
00007 namespace Rivet {
00008 
00009 
00010   /// @brief ATLAS azimuthal decorrelation with jet veto analysis
00011   /// @author James Robinson <james.robinson@cern.ch>
00012   class ATLAS_2014_I1307243 : public Analysis {
00013   public:
00014 
00015     /// Constructor
00016     ATLAS_2014_I1307243()
00017       : Analysis("ATLAS_2014_I1307243"),
00018         _fiducialRegions{2010, 2011},
00019         _vetoScale{20*GeV, 30*GeV},
00020         _yFiducial{4.4, 2.4},
00021         _gapCategories{"inclusive", "gap"},
00022         _dy_max(8),
00023         _nEventsInAcceptance(0),
00024         _sumOfAcceptedWeights(0.)
00025     {   }
00026 
00027 
00028     /// Book histograms and initialise projections before the run
00029     void init() {
00030 
00031       /// Initialise and register projections here
00032       FinalState fs;
00033       FastJets fastJets(fs, FastJets::ANTIKT, 0.6);
00034       fastJets.useInvisibles(true);
00035       declare(fastJets, "AntiKt6JetsWithInvisibles");
00036 
00037 
00038       /// Book histograms
00039       foreach (const string& gapCategory, _gapCategories ) {
00040         const int gapCategoryOffset = (gapCategory == "inclusive") ? 0 : 1;
00041 
00042         // Temporary inclusive and gap histograms
00043         _h_tmp_events_dy[gapCategory] = bookHisto1D(1, 1, 1);
00044         _h_tmp_events_dy[gapCategory]->setPath("/TMP/" + toString(gapCategory) + "_events_dy");
00045         _h_tmp_events_pTbar[gapCategory] = bookHisto1D(2, 1, 1);
00046         _h_tmp_events_pTbar[gapCategory]->setPath("/TMP/" + toString(gapCategory) + "_events_pTbar");
00047 
00048         // Azimuthal moment histograms
00049         _h_profiled_cosDeltaPhi_dy[gapCategory]       = bookProfile1D( 5+4*gapCategoryOffset, 1, 1);
00050         _h_profiled_cosDeltaPhi_pTbar[gapCategory]    = bookProfile1D( 6+4*gapCategoryOffset, 1, 1);
00051         _h_C2C1_dy[gapCategory]                       = bookScatter2D( 7+4*gapCategoryOffset, 1, 1, false);
00052         _h_C2C1_pTbar[gapCategory]                    = bookScatter2D( 8+4*gapCategoryOffset, 1, 1, false);
00053         _h_profiled_cosTwoDeltaPhi_dy[gapCategory]    = bookProfile1D(37+2*gapCategoryOffset, 1, 1);
00054         _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory] = bookProfile1D(38+2*gapCategoryOffset, 1, 1);
00055 
00056         // Gap fraction vs. Q0 and cross-section in dy slices
00057         for (size_t dyLow = 0; dyLow < _dy_max; ++dyLow ) {
00058           Histo1DPtr _h_tmp_events_Q0_single_dySlice = bookHisto1D( 29+dyLow, 1, 1);
00059           _h_tmp_events_Q0_single_dySlice->setPath("/TMP/" + toString(gapCategory) + "_events_dySlice_" + toString(dyLow) + "_" + toString(dyLow+1) + "_Q0");
00060           _h_tmp_events_Q0_dySlices[gapCategory].addHistogram( dyLow, dyLow+1, _h_tmp_events_Q0_single_dySlice );
00061           _h_crossSection_dphi_dySlices[gapCategory].addHistogram( dyLow, dyLow+1, bookHisto1D( 13+(_dy_max*gapCategoryOffset)+dyLow, 1, 1));
00062         }
00063 
00064       }
00065 
00066       // Number of jets in rapidity interval
00067       _h_profiled_nJets_rapidity_interval_dy    = bookProfile1D( 3, 1, 1);
00068       _h_profiled_nJets_rapidity_interval_pTbar = bookProfile1D( 4, 1, 1);
00069     }
00070 
00071 
00072     /// Perform the per-event analysis
00073     void analyze(const Event& event) {
00074 
00075       // Get the event weight
00076       const double weight( event.weight() );
00077       bool eventAccepted( false );
00078 
00079       for (int iFiducialRegion = 0; iFiducialRegion < 2; ++iFiducialRegion ) {
00080 
00081         // Retrieve all anti-kt R=0.6 jets above _pTMin and inside |_yFiducial|
00082         const Jets akt6Jets = apply<JetAlg>(event, "AntiKt6JetsWithInvisibles").jetsByPt( Cuts::absrap < _yFiducial.at(iFiducialRegion) );
00083         // If there are fewer than 2 jets then bail
00084         if ( akt6Jets.size() < 2 ) { vetoEvent; }
00085 
00086         // Require jets to be above {60, 50} GeV
00087         if ( akt6Jets.at(0).momentum().pT() < 60.*GeV || akt6Jets.at(1).momentum().pT() < 50.*GeV ) { vetoEvent; }
00088 
00089         // Identify gap boundaries
00090         double yMin( std::min( akt6Jets.at(0).momentum().rapidity(), akt6Jets.at(1).momentum().rapidity() ) );
00091         double yMax( std::max( akt6Jets.at(0).momentum().rapidity(), akt6Jets.at(1).momentum().rapidity() ) );
00092 
00093         // Determine azimuthal decorrelation quantities
00094         const double dy( yMax - yMin );
00095         const double dphi( mapAngle0ToPi( akt6Jets.at(0).momentum().phi() - akt6Jets.at(1).momentum().phi() ) );
00096         const double pTbar( (akt6Jets.at(0).momentum().pT() + akt6Jets.at(1).momentum().pT())/2.0 );
00097 
00098         // Impose minimum dy for the 2011 phase space
00099         if ( _fiducialRegions.at(iFiducialRegion) == 2011 && dy < 1.0 ) { vetoEvent; }
00100 
00101         // Construct gap candidates sample
00102         Jets gapCandidates;
00103         foreach( const Jet &j, akt6Jets ) {
00104           if ( inRange( j.momentum().rapidity(), yMin, yMax, OPEN, OPEN ) ) {
00105             gapCandidates.push_back( j );
00106           }
00107         }
00108 
00109         // Determine gap quantities
00110         unsigned int nJets_rapidity_interval( 0 );
00111         double maximumGapQ0( 0. );
00112         foreach( const Jet &jet, gapCandidates ) {
00113           const double pT( jet.momentum().pT() );
00114           if ( pT > _vetoScale.at(iFiducialRegion) ) { ++nJets_rapidity_interval; }
00115           if ( pT > maximumGapQ0 ) { maximumGapQ0 = pT; }
00116         }
00117 
00118         // Fill histograms
00119         if ( weight < 0.0 ) {
00120           MSG_DEBUG( "Negative weight " << weight << "found!" );
00121         }
00122         fillHistograms( _fiducialRegions.at(iFiducialRegion), dy, pTbar, dphi, nJets_rapidity_interval, maximumGapQ0, weight );
00123         eventAccepted = true;
00124       }
00125 
00126       // Count number of accepted events
00127       if ( eventAccepted ) {
00128         _nEventsInAcceptance++;
00129         _sumOfAcceptedWeights += weight;
00130       }
00131       return;
00132     }
00133 
00134     void fillHistograms( const unsigned int &fiducialRegion, const double &dy, const double &pTbar, const double &dphi, const double &nJets_rapidity_interval, const double &maximumGapQ0, const double &weight) {
00135       // Determine gap category
00136       vector<string> eventGapCategories{{"inclusive"}};
00137       if ( nJets_rapidity_interval == 0 ) { eventGapCategories += string("gap"); }
00138 
00139       // Fill histograms relevant for comparison with 2010 data
00140       if ( fiducialRegion == _fiducialRegions.at(0) ) {
00141         // Fill inclusive and gap histograms
00142         foreach( const string &gapCategory, eventGapCategories ) {
00143           _h_tmp_events_dy[gapCategory]->fill( dy, weight );
00144           _h_crossSection_dphi_dySlices[gapCategory].fill( dy, dphi / M_PI, weight );
00145           _h_profiled_cosDeltaPhi_dy[gapCategory]->fill( dy, cos(M_PI - dphi), weight );
00146           _h_profiled_cosTwoDeltaPhi_dy[gapCategory]->fill( dy, cos(2.0 * dphi), weight );
00147         }
00148         // Fill profiled nJets_rapidity_interval
00149         _h_profiled_nJets_rapidity_interval_dy->fill( dy, nJets_rapidity_interval, weight );
00150         // Fill Q0 histograms - can fill multiple points per event
00151         foreach( const YODA::HistoBin1D Q0_bin, _h_tmp_events_Q0_dySlices["inclusive"].getHistograms().at(0)->bins() ) {
00152           const double Q0( Q0_bin.xMid() );
00153           _h_tmp_events_Q0_dySlices["inclusive"].fill(dy, Q0, weight);
00154           if ( maximumGapQ0 <= Q0 ) { _h_tmp_events_Q0_dySlices["gap"].fill(dy, Q0, weight); }
00155         }
00156 
00157       // Fill histograms relevant for comparison with 2011 data
00158       } else if ( fiducialRegion == _fiducialRegions.at(1) ) {
00159         // Fill inclusive and gap histograms
00160         foreach( const string &gapCategory, eventGapCategories ) {
00161           _h_tmp_events_pTbar[gapCategory]->fill( pTbar, weight );
00162           _h_profiled_cosDeltaPhi_pTbar[gapCategory]->fill( pTbar, cos(M_PI - dphi), weight );
00163           _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory]->fill( pTbar, cos(2.0 * dphi), weight );
00164         }
00165         // Fill profiled nJets_rapidity_interval
00166         _h_profiled_nJets_rapidity_interval_pTbar->fill( pTbar, nJets_rapidity_interval, weight );
00167       }
00168       return;
00169     }
00170 
00171     /// Normalise histograms etc., after the run
00172     void finalize() {
00173       // Normalise cross-section plots to correct cross-section
00174       const double xs_pb( crossSection()/picobarn );
00175       const double nEventsGenerated( sumOfWeights() );
00176       double xs_norm_factor( xs_pb/nEventsGenerated );
00177       const double ySpan(1); // all dy spans are 1
00178       foreach (const string& gapCategory, _gapCategories ) {
00179         _h_crossSection_dphi_dySlices[gapCategory].scale(xs_norm_factor/ySpan/M_PI, this);
00180       }
00181 
00182       // Create C2/C1 scatter from profiles
00183       foreach (const string& gapCategory, _gapCategories ) {
00184         divide( _h_profiled_cosTwoDeltaPhi_dy[gapCategory], _h_profiled_cosDeltaPhi_dy[gapCategory], _h_C2C1_dy[gapCategory] );
00185         divide( _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory], _h_profiled_cosDeltaPhi_pTbar[gapCategory], _h_C2C1_pTbar[gapCategory] );
00186       }
00187 
00188       // Fill simple gap fractions
00189       Scatter2DPtr h_gap_fraction_dy    = bookScatter2D( 1, 1, 1);
00190       Scatter2DPtr h_gap_fraction_pTbar = bookScatter2D( 2, 1, 1, false);
00191       Rivet::Analysis::efficiency( *_h_tmp_events_dy["gap"].get(), *_h_tmp_events_dy["inclusive"].get(), h_gap_fraction_dy );
00192       Rivet::Analysis::efficiency( *_h_tmp_events_pTbar["gap"].get(), *_h_tmp_events_pTbar["inclusive"].get(), h_gap_fraction_pTbar );
00193 
00194       // Register and fill Q0 gap fractions
00195       for (unsigned int dyLow = 0; dyLow < _dy_max; ++dyLow ) {
00196         Scatter2DPtr h_gap_fraction_Q0 = bookScatter2D( 29+dyLow, 1, 1, false);
00197         Rivet::Analysis::efficiency( *_h_tmp_events_Q0_dySlices["gap"].getHistograms().at(dyLow).get(), *_h_tmp_events_Q0_dySlices["inclusive"].getHistograms().at(dyLow).get(), h_gap_fraction_Q0 );
00198       }
00199 
00200       /// Print summary information
00201       MSG_INFO( "Cross-Section/pb     : " << xs_pb );
00202       MSG_INFO( "Sum of weights       : " << sumOfWeights() << "  (" << _sumOfAcceptedWeights << " accepted)" );
00203       MSG_INFO( "nEvents              : " << numEvents() << "  (" << _nEventsInAcceptance << " accepted)" );
00204       MSG_INFO( "Normalisation factor : " << xs_norm_factor );
00205     }
00206 
00207 
00208   private:
00209 
00210     /// Member variables
00211     vector<unsigned int> _fiducialRegions;
00212     vector<double> _vetoScale, _yFiducial;
00213     vector<string> _gapCategories;
00214 
00215     unsigned int _dy_max;
00216     unsigned int _nEventsInAcceptance;
00217     double _sumOfAcceptedWeights;
00218 
00219     /// Histograms
00220     // Number of events : gap and non-gap : necessary input for gap fractions but not saved as output
00221     map<string, Histo1DPtr> _h_tmp_events_dy;
00222     map<string, Histo1DPtr> _h_tmp_events_pTbar;
00223     map<string, BinnedHistogram<double> > _h_tmp_events_Q0_dySlices;
00224 
00225     // Number of jets in rapidity interval
00226     Profile1DPtr _h_profiled_nJets_rapidity_interval_dy;
00227     Profile1DPtr _h_profiled_nJets_rapidity_interval_pTbar;
00228 
00229     // Azimuthal moment histograms
00230     map<string, Profile1DPtr> _h_profiled_cosDeltaPhi_dy;
00231     map<string, Profile1DPtr> _h_profiled_cosDeltaPhi_pTbar;
00232     map<string, Profile1DPtr> _h_profiled_cosTwoDeltaPhi_dy;
00233     map<string, Profile1DPtr> _h_profiled_cosTwoDeltaPhi_pTbar;
00234     map<string, Scatter2DPtr> _h_C2C1_dy;
00235     map<string, Scatter2DPtr> _h_C2C1_pTbar;
00236 
00237     // Cross-section vs. #Delta#phi
00238     map<string, BinnedHistogram<double> > _h_crossSection_dphi_dySlices;
00239   };
00240 
00241   // The hook for the plugin system
00242   DECLARE_RIVET_PLUGIN(ATLAS_2014_I1307243);
00243 
00244 }