CDF_2010_S8591881_DY.cc
Go to the documentation of this file.
00001 // -*- C++ -*- 00002 #include "Rivet/Analysis.hh" 00003 #include "Rivet/Projections/ChargedFinalState.hh" 00004 #include "Rivet/Projections/ChargedLeptons.hh" 00005 00006 namespace Rivet { 00007 00008 00009 00010 00011 /// @brief CDF Run II underlying event in Drell-Yan 00012 /// @author Hendrik Hoeth 00013 /// 00014 /// Measurement of the underlying event in Drell-Yan 00015 /// \f$ Z/\gamma^* \to e^+ e^- \f$ and 00016 /// \f$ Z/\gamma^* \to \mu^+ \mu^- \f$ events. The reconstructed 00017 /// Z defines the \f$ \phi \f$ orientation. A Z mass window cut is applied. 00018 /// 00019 /// @par Run conditions 00020 /// 00021 /// @arg \f$ \sqrt{s} = \f$ 1960 GeV 00022 /// @arg produce Drell-Yan events 00023 /// @arg Set particles with c*tau > 10 mm stable 00024 /// @arg Z decay mode: Z -> e+e- and Z -> mu+mu- 00025 /// @arg gamma decay mode: gamma -> e+e- and gamma -> mu+mu- 00026 /// @arg minimum invariant mass of the fermion pair coming from the Z/gamma: 70 GeV 00027 class CDF_2010_S8591881_DY : public Analysis { 00028 public: 00029 00030 /// Constructor 00031 CDF_2010_S8591881_DY() : Analysis("CDF_2010_S8591881_DY") 00032 { 00033 } 00034 00035 00036 /// @name Analysis methods 00037 //@{ 00038 00039 void init() { 00040 // Set up projections 00041 const ChargedFinalState cfs(-1.0, 1.0, 0.5*GeV); 00042 const ChargedFinalState clfs(-1.0, 1.0, 20*GeV); 00043 addProjection(cfs, "FS"); 00044 addProjection(ChargedLeptons(clfs), "CL"); 00045 00046 // Book histograms 00047 _hist_tnchg = bookProfile1D( 1, 1, 1); 00048 _hist_pnchg = bookProfile1D( 1, 1, 2); 00049 _hist_anchg = bookProfile1D( 1, 1, 3); 00050 _hist_pmaxnchg = bookProfile1D( 2, 1, 1); 00051 _hist_pminnchg = bookProfile1D( 2, 1, 2); 00052 _hist_pdifnchg = bookProfile1D( 2, 1, 3); 00053 _hist_tcptsum = bookProfile1D( 3, 1, 1); 00054 _hist_pcptsum = bookProfile1D( 3, 1, 2); 00055 _hist_acptsum = bookProfile1D( 3, 1, 3); 00056 _hist_pmaxcptsum = bookProfile1D( 4, 1, 1); 00057 _hist_pmincptsum = bookProfile1D( 4, 1, 2); 00058 _hist_pdifcptsum = bookProfile1D( 4, 1, 3); 00059 _hist_tcptave = bookProfile1D( 5, 1, 1); 00060 _hist_pcptave = bookProfile1D( 5, 1, 2); 00061 _hist_tcptmax = bookProfile1D( 6, 1, 1); 00062 _hist_pcptmax = bookProfile1D( 6, 1, 2); 00063 _hist_zptvsnchg = bookProfile1D( 7, 1, 1); 00064 _hist_cptavevsnchg = bookProfile1D( 8, 1, 1); 00065 _hist_cptavevsnchgsmallzpt = bookProfile1D( 9, 1, 1); 00066 } 00067 00068 00069 /// Do the analysis 00070 void analyze(const Event& e) { 00071 00072 const FinalState& fs = applyProjection<FinalState>(e, "FS"); 00073 const size_t numParticles = fs.particles().size(); 00074 00075 // Even if we only generate hadronic events, we still need a cut on numCharged >= 2. 00076 if (numParticles < 1) { 00077 MSG_DEBUG("Failed multiplicity cut"); 00078 vetoEvent; 00079 } 00080 00081 // Get the event weight 00082 const double weight = e.weight(); 00083 00084 // Get the leptons 00085 const Particles& leptons = applyProjection<ChargedLeptons>(e, "CL").chargedLeptons(); 00086 00087 // We want exactly two leptons of the same flavour. 00088 MSG_DEBUG("lepton multiplicity = " << leptons.size()); 00089 if (leptons.size() != 2 || leptons[0].pid() != -leptons[1].pid() ) vetoEvent; 00090 00091 // Lepton pT > 20 GeV 00092 if (leptons[0].pT()/GeV <= 20 || leptons[1].pT()/GeV <= 20) vetoEvent; 00093 00094 // Lepton pair should have an invariant mass between 70 and 110 and |eta| < 6 00095 const FourMomentum dilepton = leptons[0].momentum() + leptons[1].momentum(); 00096 if (!inRange(dilepton.mass()/GeV, 70., 110.) || fabs(dilepton.eta()) >= 6) vetoEvent; 00097 MSG_DEBUG("Dilepton mass = " << dilepton.mass()/GeV << " GeV"); 00098 MSG_DEBUG("Dilepton pT = " << dilepton.pT()/GeV << " GeV"); 00099 00100 // Calculate the observables 00101 size_t numToward(0), numAway(0); 00102 long int numTrans1(0), numTrans2(0); 00103 double ptSumToward(0.0), ptSumTrans1(0.0), ptSumTrans2(0.0), ptSumAway(0.0); 00104 double ptMaxToward(0.0), ptMaxTrans1(0.0), ptMaxTrans2(0.0), ptMaxAway(0.0); 00105 const double phiZ = dilepton.azimuthalAngle(); 00106 const double pTZ = dilepton.pT(); 00107 /// @todo Replace with foreach 00108 for (Particles::const_iterator p = fs.particles().begin(); p != fs.particles().end(); ++p) { 00109 // Don't use the leptons 00110 /// @todo Replace with PID::isLepton 00111 if (abs(p->pid()) < 20) continue; 00112 00113 const double dPhi = deltaPhi(p->momentum().phi(), phiZ); 00114 const double pT = p->pT(); 00115 double rotatedphi = p->momentum().phi() - phiZ; 00116 while (rotatedphi < 0) rotatedphi += 2*PI; 00117 00118 if (dPhi < PI/3.0) { 00119 ptSumToward += pT; 00120 ++numToward; 00121 if (pT > ptMaxToward) 00122 ptMaxToward = pT; 00123 } else if (dPhi < 2*PI/3.0) { 00124 if (rotatedphi <= PI) { 00125 ptSumTrans1 += pT; 00126 ++numTrans1; 00127 if (pT > ptMaxTrans1) 00128 ptMaxTrans1 = pT; 00129 } 00130 else { 00131 ptSumTrans2 += pT; 00132 ++numTrans2; 00133 if (pT > ptMaxTrans2) 00134 ptMaxTrans2 = pT; 00135 } 00136 } else { 00137 ptSumAway += pT; 00138 ++numAway; 00139 if (pT > ptMaxAway) 00140 ptMaxAway = pT; 00141 } 00142 // We need to subtract the two leptons from the number of particles to get the correct multiplicity 00143 _hist_cptavevsnchg->fill(numParticles-2, pT, weight); 00144 if (pTZ < 10) 00145 _hist_cptavevsnchgsmallzpt->fill(numParticles-2, pT, weight); 00146 } 00147 00148 // Fill the histograms 00149 _hist_tnchg->fill(pTZ, numToward/(4*PI/3), weight); 00150 _hist_pnchg->fill(pTZ, (numTrans1+numTrans2)/(4*PI/3), weight); 00151 _hist_pmaxnchg->fill(pTZ, (numTrans1>numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight); 00152 _hist_pminnchg->fill(pTZ, (numTrans1<numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight); 00153 _hist_pdifnchg->fill(pTZ, abs(numTrans1-numTrans2)/(2*PI/3), weight); 00154 _hist_anchg->fill(pTZ, numAway/(4*PI/3), weight); 00155 00156 _hist_tcptsum->fill(pTZ, ptSumToward/(4*PI/3), weight); 00157 _hist_pcptsum->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(4*PI/3), weight); 00158 _hist_pmaxcptsum->fill(pTZ, (ptSumTrans1>ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3), weight); 00159 _hist_pmincptsum->fill(pTZ, (ptSumTrans1<ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3), weight); 00160 _hist_pdifcptsum->fill(pTZ, fabs(ptSumTrans1-ptSumTrans2)/(2*PI/3), weight); 00161 _hist_acptsum->fill(pTZ, ptSumAway/(4*PI/3), weight); 00162 00163 if (numToward > 0) { 00164 _hist_tcptave->fill(pTZ, ptSumToward/numToward, weight); 00165 _hist_tcptmax->fill(pTZ, ptMaxToward, weight); 00166 } 00167 if ((numTrans1+numTrans2) > 0) { 00168 _hist_pcptave->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(numTrans1+numTrans2), weight); 00169 _hist_pcptmax->fill(pTZ, (ptMaxTrans1 > ptMaxTrans2 ? ptMaxTrans1 : ptMaxTrans2), weight); 00170 } 00171 00172 // We need to subtract the two leptons from the number of particles to get the correct multiplicity 00173 _hist_zptvsnchg->fill(numParticles-2, pTZ, weight); 00174 } 00175 00176 00177 void finalize() { 00178 } 00179 00180 //@} 00181 00182 00183 private: 00184 00185 Profile1DPtr _hist_tnchg; 00186 Profile1DPtr _hist_pnchg; 00187 Profile1DPtr _hist_pmaxnchg; 00188 Profile1DPtr _hist_pminnchg; 00189 Profile1DPtr _hist_pdifnchg; 00190 Profile1DPtr _hist_anchg; 00191 Profile1DPtr _hist_tcptsum; 00192 Profile1DPtr _hist_pcptsum; 00193 Profile1DPtr _hist_pmaxcptsum; 00194 Profile1DPtr _hist_pmincptsum; 00195 Profile1DPtr _hist_pdifcptsum; 00196 Profile1DPtr _hist_acptsum; 00197 Profile1DPtr _hist_tcptave; 00198 Profile1DPtr _hist_pcptave; 00199 Profile1DPtr _hist_tcptmax; 00200 Profile1DPtr _hist_pcptmax; 00201 Profile1DPtr _hist_zptvsnchg; 00202 Profile1DPtr _hist_cptavevsnchg; 00203 Profile1DPtr _hist_cptavevsnchgsmallzpt; 00204 00205 }; 00206 00207 00208 00209 // The hook for the plugin system 00210 DECLARE_RIVET_PLUGIN(CDF_2010_S8591881_DY); 00211 00212 } Generated on Wed Oct 7 2015 12:09:12 for The Rivet MC analysis system by ![]() |