ATLAS_2011_I945498.cc
Go to the documentation of this file.
00001 // -*- C++ -*- 00002 #include "Rivet/Analysis.hh" 00003 00004 #include "Rivet/Projections/ZFinder.hh" 00005 #include "Rivet/Projections/FastJets.hh" 00006 #include "Rivet/Projections/FinalState.hh" 00007 #include "Rivet/Projections/VetoedFinalState.hh" 00008 #include "Rivet/Projections/IdentifiedFinalState.hh" 00009 #include "Rivet/Projections/LeadingParticlesFinalState.hh" 00010 00011 00012 namespace Rivet { 00013 00014 00015 /// ATLAS Z+jets in pp at 7 TeV 00016 class ATLAS_2011_I945498 : public Analysis { 00017 public: 00018 00019 /// Constructor 00020 ATLAS_2011_I945498() 00021 : Analysis("ATLAS_2011_I945498") 00022 { } 00023 00024 00025 /// Book histograms and initialise projections before the run 00026 void init() { 00027 00028 // Variable initialisation 00029 _isZeeSample = false; 00030 _isZmmSample = false; 00031 for (size_t chn = 0; chn < 3; ++chn) { 00032 weights_nj0[chn] = 0; 00033 weights_nj1[chn] = 0; 00034 weights_nj2[chn] = 0; 00035 weights_nj3[chn] = 0; 00036 weights_nj4[chn] = 0; 00037 } 00038 00039 // Set up projections 00040 FinalState fs; 00041 ZFinder zfinder_mu(fs, Cuts::abseta < 2.4 && Cuts::pT > 20*GeV, PID::MUON, 66*GeV, 116*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00042 addProjection(zfinder_mu, "ZFinder_mu"); 00043 00044 Cut cuts = (Cuts::abseta < 1.37 || Cuts::absetaIn(1.52, 2.47)) && Cuts::pT > 20*GeV; 00045 00046 ZFinder zfinder_el(fs, cuts, PID::ELECTRON, 66*GeV, 116*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00047 addProjection(zfinder_el, "ZFinder_el"); 00048 00049 Cut cuts25_20 = Cuts::abseta < 2.5 && Cuts::pT > 20*GeV; 00050 // For combined cross-sections (combined phase space + dressed level) 00051 ZFinder zfinder_comb_mu(fs, cuts25_20, PID::MUON, 66.0*GeV, 116.0*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00052 addProjection(zfinder_comb_mu, "ZFinder_comb_mu"); 00053 ZFinder zfinder_comb_el(fs, cuts25_20, PID::ELECTRON, 66.0*GeV, 116.0*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00054 addProjection(zfinder_comb_el, "ZFinder_comb_el"); 00055 00056 // Define veto FS in order to prevent Z-decay products entering the jet algorithm 00057 VetoedFinalState remfs; 00058 remfs.addVetoOnThisFinalState(zfinder_el); 00059 remfs.addVetoOnThisFinalState(zfinder_mu); 00060 VetoedFinalState remfs_comb; 00061 remfs_comb.addVetoOnThisFinalState(zfinder_comb_el); 00062 remfs_comb.addVetoOnThisFinalState(zfinder_comb_mu); 00063 00064 FastJets jets(remfs, FastJets::ANTIKT, 0.4); 00065 jets.useInvisibles(); 00066 addProjection(jets, "jets"); 00067 FastJets jets_comb(remfs_comb, FastJets::ANTIKT, 0.4); 00068 jets_comb.useInvisibles(); 00069 addProjection(jets_comb, "jets_comb"); 00070 00071 // 0=el, 1=mu, 2=comb 00072 for (size_t chn = 0; chn < 3; ++chn) { 00073 _h_njet_incl[chn] = bookHisto1D(1, 1, chn+1); 00074 _h_njet_ratio[chn] = bookScatter2D(2, 1, chn+1); 00075 _h_ptjet[chn] = bookHisto1D(3, 1, chn+1); 00076 _h_ptlead[chn] = bookHisto1D(4, 1, chn+1); 00077 _h_ptseclead[chn] = bookHisto1D(5, 1, chn+1); 00078 _h_yjet[chn] = bookHisto1D(6, 1, chn+1); 00079 _h_ylead[chn] = bookHisto1D(7, 1, chn+1); 00080 _h_yseclead[chn] = bookHisto1D(8, 1, chn+1); 00081 _h_mass[chn] = bookHisto1D(9, 1, chn+1); 00082 _h_deltay[chn] = bookHisto1D(10, 1, chn+1); 00083 _h_deltaphi[chn] = bookHisto1D(11, 1, chn+1); 00084 _h_deltaR[chn] = bookHisto1D(12, 1, chn+1); 00085 } 00086 } 00087 00088 00089 // Jet selection criteria universal for electron and muon channel 00090 /// @todo Replace with a Cut passed to jetsByPt 00091 Jets selectJets(const ZFinder* zf, const FastJets* allJets) { 00092 const FourMomentum l1 = zf->constituents()[0].momentum(); 00093 const FourMomentum l2 = zf->constituents()[1].momentum(); 00094 Jets jets; 00095 foreach (const Jet& jet, allJets->jetsByPt(30*GeV)) { 00096 const FourMomentum jmom = jet.momentum(); 00097 if (jmom.absrap() < 4.4 && 00098 deltaR(l1, jmom) > 0.5 && deltaR(l2, jmom) > 0.5) { 00099 jets.push_back(jet); 00100 } 00101 } 00102 return jets; 00103 } 00104 00105 00106 /// Perform the per-event analysis 00107 void analyze(const Event& event) { 00108 const double weight = event.weight(); 00109 00110 vector<const ZFinder*> zfs; 00111 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_el"))); 00112 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_mu"))); 00113 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_comb_el"))); 00114 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_comb_mu"))); 00115 00116 vector<const FastJets*> fjs; 00117 fjs.push_back(& (applyProjection<FastJets>(event, "jets"))); 00118 fjs.push_back(& (applyProjection<FastJets>(event, "jets_comb"))); 00119 00120 // Determine what kind of MC sample this is 00121 const bool isZee = (zfs[0]->bosons().size() == 1) || (zfs[2]->bosons().size() == 1); 00122 const bool isZmm = (zfs[1]->bosons().size() == 1) || (zfs[3]->bosons().size() == 1); 00123 if (isZee) _isZeeSample = true; 00124 if (isZmm) _isZmmSample = true; 00125 00126 // Require exactly one electronic or muonic Z-decay in the event 00127 bool isZeemm = ( (zfs[0]->bosons().size() == 1 && zfs[1]->bosons().size() != 1) || 00128 (zfs[1]->bosons().size() == 1 && zfs[0]->bosons().size() != 1) ); 00129 bool isZcomb = ( (zfs[2]->bosons().size() == 1 && zfs[3]->bosons().size() != 1) || 00130 (zfs[3]->bosons().size() == 1 && zfs[2]->bosons().size() != 1) ); 00131 if (!isZeemm && !isZcomb) vetoEvent; 00132 00133 vector<int> zfIDs; 00134 vector<int> fjIDs; 00135 if (isZeemm) { 00136 int chn = zfs[0]->bosons().size() == 1 ? 0 : 1; 00137 zfIDs.push_back(chn); 00138 fjIDs.push_back(0); 00139 } 00140 if (isZcomb) { 00141 int chn = zfs[2]->bosons().size() == 1 ? 2 : 3; 00142 zfIDs.push_back(chn); 00143 fjIDs.push_back(1); 00144 } 00145 00146 for (size_t izf = 0; izf < zfIDs.size(); ++izf) { 00147 int zfID = zfIDs[izf]; 00148 int fjID = fjIDs[izf]; 00149 00150 int chn = zfID; 00151 if (zfID == 2 || zfID == 3) chn = 2; 00152 00153 Jets jets = selectJets(zfs[zfID], fjs[fjID]); 00154 00155 switch (jets.size()) { 00156 case 0: 00157 weights_nj0[chn] += weight; 00158 break; 00159 case 1: 00160 weights_nj0[chn] += weight; 00161 weights_nj1[chn] += weight; 00162 break; 00163 case 2: 00164 weights_nj0[chn] += weight; 00165 weights_nj1[chn] += weight; 00166 weights_nj2[chn] += weight; 00167 break; 00168 case 3: 00169 weights_nj0[chn] += weight; 00170 weights_nj1[chn] += weight; 00171 weights_nj2[chn] += weight; 00172 weights_nj3[chn] += weight; 00173 break; 00174 default: // >= 4 00175 weights_nj0[chn] += weight; 00176 weights_nj1[chn] += weight; 00177 weights_nj2[chn] += weight; 00178 weights_nj3[chn] += weight; 00179 weights_nj4[chn] += weight; 00180 } 00181 00182 // Require at least one jet 00183 if (jets.empty()) continue; 00184 00185 // Fill jet multiplicities 00186 for (size_t ijet = 1; ijet <= jets.size(); ++ijet) { 00187 _h_njet_incl[chn]->fill(ijet, weight); 00188 } 00189 00190 // Loop over selected jets, fill inclusive jet distributions 00191 for (size_t ijet = 0; ijet < jets.size(); ++ijet) { 00192 _h_ptjet[chn]->fill(jets[ijet].pT()/GeV, weight); 00193 _h_yjet [chn]->fill(fabs(jets[ijet].rapidity()), weight); 00194 } 00195 00196 // Leading jet histos 00197 const double ptlead = jets[0].pT()/GeV; 00198 const double yabslead = fabs(jets[0].rapidity()); 00199 _h_ptlead[chn]->fill(ptlead, weight); 00200 _h_ylead [chn]->fill(yabslead, weight); 00201 00202 if (jets.size() >= 2) { 00203 // Second jet histos 00204 const double pt2ndlead = jets[1].pT()/GeV; 00205 const double yabs2ndlead = fabs(jets[1].rapidity()); 00206 _h_ptseclead[chn] ->fill(pt2ndlead, weight); 00207 _h_yseclead [chn] ->fill(yabs2ndlead, weight); 00208 00209 // Dijet histos 00210 const double deltaphi = fabs(deltaPhi(jets[1], jets[0])); 00211 const double deltarap = fabs(jets[0].rapidity() - jets[1].rapidity()) ; 00212 const double deltar = fabs(deltaR(jets[0], jets[1], RAPIDITY)); 00213 const double mass = (jets[0].momentum() + jets[1].momentum()).mass(); 00214 _h_mass [chn] ->fill(mass/GeV, weight); 00215 _h_deltay [chn] ->fill(deltarap, weight); 00216 _h_deltaphi[chn] ->fill(deltaphi, weight); 00217 _h_deltaR [chn] ->fill(deltar, weight); 00218 } 00219 } 00220 } 00221 00222 00223 /// @name Ratio calculator util functions 00224 //@{ 00225 00226 /// Calculate the ratio, being careful about div-by-zero 00227 double ratio(double a, double b) { 00228 return (b != 0) ? a/b : 0; 00229 } 00230 00231 /// Calculate the ratio error, being careful about div-by-zero 00232 double ratio_err(double a, double b) { 00233 return (b != 0) ? sqrt(a/sqr(b) + sqr(a)/(b*b*b)) : 0; 00234 } 00235 00236 //@} 00237 00238 00239 void finalize() { 00240 // Fill ratio histograms 00241 for (size_t chn = 0; chn < 3; ++chn) { 00242 _h_njet_ratio[chn]->addPoint(1, ratio(weights_nj1[chn], weights_nj0[chn]), 0.5, ratio_err(weights_nj1[chn], weights_nj0[chn])); 00243 _h_njet_ratio[chn]->addPoint(2, ratio(weights_nj2[chn], weights_nj1[chn]), 0.5, ratio_err(weights_nj2[chn], weights_nj1[chn])); 00244 _h_njet_ratio[chn]->addPoint(3, ratio(weights_nj3[chn], weights_nj2[chn]), 0.5, ratio_err(weights_nj3[chn], weights_nj2[chn])); 00245 _h_njet_ratio[chn]->addPoint(4, ratio(weights_nj4[chn], weights_nj3[chn]), 0.5, ratio_err(weights_nj4[chn], weights_nj3[chn])); 00246 } 00247 00248 // Scale other histos 00249 for (size_t chn = 0; chn < 3; ++chn) { 00250 // For ee and mumu channels: normalize to Njet inclusive cross-section 00251 double xs = (chn == 2) ? crossSectionPerEvent()/picobarn : 1 / weights_nj0[chn]; 00252 // For inclusive MC sample(ee/mmu channels together) we want the single-lepton-flavor xsec 00253 if (_isZeeSample && _isZmmSample) xs /= 2; 00254 00255 // Special case histogram: always not normalized 00256 scale(_h_njet_incl[chn], (chn < 2) ? crossSectionPerEvent()/picobarn : xs); 00257 00258 scale(_h_ptjet[chn] , xs); 00259 scale(_h_ptlead[chn] , xs); 00260 scale(_h_ptseclead[chn], xs); 00261 scale(_h_yjet[chn] , xs); 00262 scale(_h_ylead[chn] , xs); 00263 scale(_h_yseclead[chn] , xs); 00264 scale(_h_deltaphi[chn] , xs); 00265 scale(_h_deltay[chn] , xs); 00266 scale(_h_deltaR[chn] , xs); 00267 scale(_h_mass[chn] , xs); 00268 } 00269 00270 } 00271 00272 //@} 00273 00274 00275 private: 00276 00277 bool _isZeeSample; 00278 bool _isZmmSample; 00279 00280 double weights_nj0[3]; 00281 double weights_nj1[3]; 00282 double weights_nj2[3]; 00283 double weights_nj3[3]; 00284 double weights_nj4[3]; 00285 00286 Scatter2DPtr _h_njet_ratio[3]; 00287 Histo1DPtr _h_njet_incl[3]; 00288 Histo1DPtr _h_ptjet[3]; 00289 Histo1DPtr _h_ptlead[3]; 00290 Histo1DPtr _h_ptseclead[3]; 00291 Histo1DPtr _h_yjet[3]; 00292 Histo1DPtr _h_ylead[3]; 00293 Histo1DPtr _h_yseclead[3]; 00294 Histo1DPtr _h_deltaphi[3]; 00295 Histo1DPtr _h_deltay[3]; 00296 Histo1DPtr _h_deltaR[3]; 00297 Histo1DPtr _h_mass[3]; 00298 00299 }; 00300 00301 00302 DECLARE_RIVET_PLUGIN(ATLAS_2011_I945498); 00303 00304 00305 } Generated on Wed Oct 7 2015 12:09:10 for The Rivet MC analysis system by ![]() |