ATLAS_2014_I1307243.cc
Go to the documentation of this file.
00001 // -*- C++ -*- 00002 #include "Rivet/Analysis.hh" 00003 #include "Rivet/Tools/Logging.hh" 00004 #include "Rivet/Projections/FastJets.hh" 00005 #include "Rivet/Tools/BinnedHistogram.hh" 00006 // // STL 00007 // #include <algorithm> 00008 // #include <map> 00009 00010 namespace Rivet { 00011 00012 /// @brief ATLAS azimuthal decorrelation with jet veto analysis 00013 /// @author James Robinson <james.robinson@cern.ch> 00014 class ATLAS_2014_I1307243 : public Analysis { 00015 public: 00016 00017 /// Constructor 00018 ATLAS_2014_I1307243() 00019 : Analysis( "ATLAS_2014_I1307243" ) 00020 , _dy_max(8) 00021 , _nEventsInAcceptance(0) 00022 , _sumOfAcceptedWeights(0.) 00023 { 00024 // Cannot do this in initialiser list without C++11 00025 _fiducialRegions += 2010, 2011; 00026 _vetoScale += 20*GeV, 30*GeV; 00027 _yFiducial += 4.4, 2.4; 00028 _gapCategories += "inclusive", "gap"; 00029 } 00030 00031 /// Book histograms and initialise projections before the run 00032 void init() { 00033 /// Initialise and register projections here 00034 FinalState fs; 00035 FastJets fastJets(fs, FastJets::ANTIKT, 0.6); 00036 fastJets.useInvisibles(true); 00037 addProjection(fastJets, "AntiKt6JetsWithInvisibles"); 00038 00039 00040 /// Book histograms 00041 foreach( const std::string &gapCategory, _gapCategories ) { 00042 int gapCategoryOffset( gapCategory == "inclusive" ? 0 : 1 ); 00043 00044 // Temporary inclusive and gap histograms 00045 _h_tmp_events_dy[gapCategory] = bookHisto1D(1, 1, 1); 00046 _h_tmp_events_dy[gapCategory]->setPath("/TMP/" + toString(gapCategory) + "_events_dy"); 00047 _h_tmp_events_pTbar[gapCategory] = bookHisto1D(2, 1, 1); 00048 _h_tmp_events_pTbar[gapCategory]->setPath("/TMP/" + toString(gapCategory) + "_events_pTbar"); 00049 00050 00051 // Azimuthal moment histograms 00052 _h_profiled_cosDeltaPhi_dy[gapCategory] = bookProfile1D( 5+4*gapCategoryOffset, 1, 1); 00053 _h_profiled_cosDeltaPhi_pTbar[gapCategory] = bookProfile1D( 6+4*gapCategoryOffset, 1, 1); 00054 _h_C2C1_dy[gapCategory] = bookScatter2D( 7+4*gapCategoryOffset, 1, 1, false); 00055 _h_C2C1_pTbar[gapCategory] = bookScatter2D( 8+4*gapCategoryOffset, 1, 1, false); 00056 _h_profiled_cosTwoDeltaPhi_dy[gapCategory] = bookProfile1D(37+2*gapCategoryOffset, 1, 1); 00057 _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory] = bookProfile1D(38+2*gapCategoryOffset, 1, 1); 00058 00059 // Gap fraction vs. Q0 and cross-section in dy slices 00060 for (size_t dyLow = 0; dyLow < _dy_max; ++dyLow ) { 00061 Histo1DPtr _h_tmp_events_Q0_single_dySlice = bookHisto1D( 29+dyLow, 1, 1); 00062 _h_tmp_events_Q0_single_dySlice->setPath("/TMP/" + toString(gapCategory) + "_events_dySlice_" + toString(dyLow) + "_" + toString(dyLow+1) + "_Q0"); 00063 _h_tmp_events_Q0_dySlices[gapCategory].addHistogram( dyLow, dyLow+1, _h_tmp_events_Q0_single_dySlice ); 00064 _h_crossSection_dphi_dySlices[gapCategory].addHistogram( dyLow, dyLow+1, bookHisto1D( 13+(_dy_max*gapCategoryOffset)+dyLow, 1, 1)); 00065 } 00066 00067 } 00068 00069 // Number of jets in rapidity interval 00070 _h_profiled_nJets_rapidity_interval_dy = bookProfile1D( 3, 1, 1); 00071 _h_profiled_nJets_rapidity_interval_pTbar = bookProfile1D( 4, 1, 1); 00072 } 00073 00074 00075 /// Perform the per-event analysis 00076 void analyze(const Event& event) { 00077 00078 // Get the event weight 00079 const double weight( event.weight() ); 00080 bool eventAccepted( false ); 00081 00082 for (int iFiducialRegion = 0; iFiducialRegion < 2; ++iFiducialRegion ) { 00083 00084 // Retrieve all anti-kt R=0.6 jets above _pTMin and inside |_yFiducial| 00085 const Jets akt6Jets = applyProjection<JetAlg>(event, "AntiKt6JetsWithInvisibles").jetsByPt( Cuts::absrap < _yFiducial.at(iFiducialRegion) ); 00086 // If there are fewer than 2 jets then bail 00087 if ( akt6Jets.size() < 2 ) { vetoEvent; } 00088 00089 // Require jets to be above {60, 50} GeV 00090 if ( akt6Jets.at(0).momentum().pT() < 60.*GeV || akt6Jets.at(1).momentum().pT() < 50.*GeV ) { vetoEvent; } 00091 00092 // Identify gap boundaries 00093 double yMin( std::min( akt6Jets.at(0).momentum().rapidity(), akt6Jets.at(1).momentum().rapidity() ) ); 00094 double yMax( std::max( akt6Jets.at(0).momentum().rapidity(), akt6Jets.at(1).momentum().rapidity() ) ); 00095 00096 // Determine azimuthal decorrelation quantities 00097 const double dy( yMax - yMin ); 00098 const double dphi( mapAngle0ToPi( akt6Jets.at(0).momentum().phi() - akt6Jets.at(1).momentum().phi() ) ); 00099 const double pTbar( (akt6Jets.at(0).momentum().pT() + akt6Jets.at(1).momentum().pT())/2.0 ); 00100 00101 // Impose minimum dy for the 2011 phase space 00102 if ( _fiducialRegions.at(iFiducialRegion) == 2011 && dy < 1.0 ) { vetoEvent; } 00103 00104 // Construct gap candidates sample 00105 Jets gapCandidates; 00106 foreach( const Jet &j, akt6Jets ) { 00107 if ( inRange( j.momentum().rapidity(), yMin, yMax, OPEN, OPEN ) ) { 00108 gapCandidates.push_back( j ); 00109 } 00110 } 00111 00112 // Determine gap quantities 00113 unsigned int nJets_rapidity_interval( 0 ); 00114 double maximumGapQ0( 0. ); 00115 foreach( const Jet &jet, gapCandidates ) { 00116 const double pT( jet.momentum().pT() ); 00117 if ( pT > _vetoScale.at(iFiducialRegion) ) { ++nJets_rapidity_interval; } 00118 if ( pT > maximumGapQ0 ) { maximumGapQ0 = pT; } 00119 } 00120 00121 // Fill histograms 00122 if ( weight < 0.0 ) { 00123 MSG_DEBUG( "Negative weight " << weight << "found!" ); 00124 } 00125 fillHistograms( _fiducialRegions.at(iFiducialRegion), dy, pTbar, dphi, nJets_rapidity_interval, maximumGapQ0, weight ); 00126 eventAccepted = true; 00127 } 00128 00129 // Count number of accepted events 00130 if ( eventAccepted ) { 00131 _nEventsInAcceptance++; 00132 _sumOfAcceptedWeights += weight; 00133 } 00134 return; 00135 } 00136 00137 void fillHistograms( const unsigned int &fiducialRegion, const double &dy, const double &pTbar, const double &dphi, const double &nJets_rapidity_interval, const double &maximumGapQ0, const double &weight) { 00138 // Determine gap category 00139 std::vector<std::string> eventGapCategories = boost::assign::list_of("inclusive"); 00140 if ( nJets_rapidity_interval == 0 ) { eventGapCategories.push_back("gap"); } 00141 00142 // Fill histograms relevant for comparison with 2010 data 00143 if ( fiducialRegion == _fiducialRegions.at(0) ) { 00144 // Fill inclusive and gap histograms 00145 foreach( const std::string &gapCategory, eventGapCategories ) { 00146 _h_tmp_events_dy[gapCategory]->fill( dy, weight ); 00147 _h_crossSection_dphi_dySlices[gapCategory].fill( dy, dphi / M_PI, weight ); 00148 _h_profiled_cosDeltaPhi_dy[gapCategory]->fill( dy, cos(M_PI - dphi), weight ); 00149 _h_profiled_cosTwoDeltaPhi_dy[gapCategory]->fill( dy, cos(2.0 * dphi), weight ); 00150 } 00151 // Fill profiled nJets_rapidity_interval 00152 _h_profiled_nJets_rapidity_interval_dy->fill( dy, nJets_rapidity_interval, weight ); 00153 // Fill Q0 histograms - can fill multiple points per event 00154 foreach( const YODA::HistoBin1D Q0_bin, _h_tmp_events_Q0_dySlices["inclusive"].getHistograms().at(0)->bins() ) { 00155 const double Q0( Q0_bin.xMid() ); 00156 _h_tmp_events_Q0_dySlices["inclusive"].fill(dy, Q0, weight); 00157 if ( maximumGapQ0 <= Q0 ) { _h_tmp_events_Q0_dySlices["gap"].fill(dy, Q0, weight); } 00158 } 00159 00160 // Fill histograms relevant for comparison with 2011 data 00161 } else if ( fiducialRegion == _fiducialRegions.at(1) ) { 00162 // Fill inclusive and gap histograms 00163 foreach( const std::string &gapCategory, eventGapCategories ) { 00164 _h_tmp_events_pTbar[gapCategory]->fill( pTbar, weight ); 00165 _h_profiled_cosDeltaPhi_pTbar[gapCategory]->fill( pTbar, cos(M_PI - dphi), weight ); 00166 _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory]->fill( pTbar, cos(2.0 * dphi), weight ); 00167 } 00168 // Fill profiled nJets_rapidity_interval 00169 _h_profiled_nJets_rapidity_interval_pTbar->fill( pTbar, nJets_rapidity_interval, weight ); 00170 } 00171 return; 00172 } 00173 00174 /// Normalise histograms etc., after the run 00175 void finalize() { 00176 /// Normalise cross-section plots to correct cross-section 00177 const double xs_pb( crossSection()/picobarn ); 00178 const double nEventsGenerated( sumOfWeights() ); 00179 double xs_norm_factor( xs_pb/nEventsGenerated ); 00180 const double ySpan(1); // all dy spans are 1 00181 foreach( const string &gapCategory, _gapCategories ) { 00182 _h_crossSection_dphi_dySlices[gapCategory].scale(xs_norm_factor/ySpan/M_PI, this); 00183 } 00184 00185 /// Create C2/C1 scatter from profiles 00186 foreach( const std::string &gapCategory, _gapCategories ) { 00187 divide( _h_profiled_cosTwoDeltaPhi_dy[gapCategory], _h_profiled_cosDeltaPhi_dy[gapCategory], _h_C2C1_dy[gapCategory] ); 00188 divide( _h_profiled_cosTwoDeltaPhi_pTbar[gapCategory], _h_profiled_cosDeltaPhi_pTbar[gapCategory], _h_C2C1_pTbar[gapCategory] ); 00189 } 00190 00191 /// Fill simple gap fractions 00192 Scatter2DPtr h_gap_fraction_dy = bookScatter2D( 1, 1, 1); 00193 Scatter2DPtr h_gap_fraction_pTbar = bookScatter2D( 2, 1, 1, false); 00194 Rivet::Analysis::efficiency( *_h_tmp_events_dy["gap"].get(), *_h_tmp_events_dy["inclusive"].get(), h_gap_fraction_dy ); 00195 Rivet::Analysis::efficiency( *_h_tmp_events_pTbar["gap"].get(), *_h_tmp_events_pTbar["inclusive"].get(), h_gap_fraction_pTbar ); 00196 00197 /// Register and fill Q0 gap fractions 00198 for( unsigned int dyLow = 0; dyLow < _dy_max; ++dyLow ) { 00199 Scatter2DPtr h_gap_fraction_Q0 = bookScatter2D( 29+dyLow, 1, 1, false); 00200 Rivet::Analysis::efficiency( *_h_tmp_events_Q0_dySlices["gap"].getHistograms().at(dyLow).get(), *_h_tmp_events_Q0_dySlices["inclusive"].getHistograms().at(dyLow).get(), h_gap_fraction_Q0 ); 00201 } 00202 00203 /// Print summary information 00204 MSG_INFO( "Cross-Section/pb : " << xs_pb ); 00205 MSG_INFO( "Sum of weights : " << sumOfWeights() << " (" << _sumOfAcceptedWeights << " accepted)" ); 00206 MSG_INFO( "nEvents : " << numEvents() << " (" << _nEventsInAcceptance << " accepted)" ); 00207 MSG_INFO( "Normalisation factor : " << xs_norm_factor ); 00208 return; 00209 } 00210 00211 private: 00212 /// Member variables 00213 std::vector<unsigned int> _fiducialRegions; 00214 std::vector<double> _vetoScale, _yFiducial; 00215 std::vector<std::string> _gapCategories; 00216 00217 unsigned int _dy_max; 00218 unsigned int _nEventsInAcceptance; 00219 double _sumOfAcceptedWeights; 00220 00221 /// Histograms 00222 // Number of events : gap and non-gap : necessary input for gap fractions but not saved as output 00223 std::map< std::string, Histo1DPtr > _h_tmp_events_dy; 00224 std::map< std::string, Histo1DPtr > _h_tmp_events_pTbar; 00225 std::map< std::string, BinnedHistogram<double> > _h_tmp_events_Q0_dySlices; 00226 00227 // Number of jets in rapidity interval 00228 Profile1DPtr _h_profiled_nJets_rapidity_interval_dy; 00229 Profile1DPtr _h_profiled_nJets_rapidity_interval_pTbar; 00230 00231 // Azimuthal moment histograms 00232 std::map< std::string, Profile1DPtr > _h_profiled_cosDeltaPhi_dy; 00233 std::map< std::string, Profile1DPtr > _h_profiled_cosDeltaPhi_pTbar; 00234 std::map< std::string, Profile1DPtr > _h_profiled_cosTwoDeltaPhi_dy; 00235 std::map< std::string, Profile1DPtr > _h_profiled_cosTwoDeltaPhi_pTbar; 00236 std::map< std::string, Scatter2DPtr > _h_C2C1_dy; 00237 std::map< std::string, Scatter2DPtr > _h_C2C1_pTbar; 00238 00239 // Cross-section vs. #Delta#phi 00240 std::map< std::string, BinnedHistogram<double> > _h_crossSection_dphi_dySlices; 00241 }; 00242 00243 // The hook for the plugin system 00244 DECLARE_RIVET_PLUGIN(ATLAS_2014_I1307243); 00245 00246 } Generated on Fri Jul 24 2015 15:47:52 for The Rivet MC analysis system by ![]() |