ATLAS_2011_I945498.cc
Go to the documentation of this file.
00001 // -*- C++ -*- 00002 #include "Rivet/Analysis.hh" 00003 00004 #include "Rivet/Projections/ZFinder.hh" 00005 #include "Rivet/Projections/FastJets.hh" 00006 #include "Rivet/Projections/FinalState.hh" 00007 #include "Rivet/Projections/VetoedFinalState.hh" 00008 #include "Rivet/Projections/IdentifiedFinalState.hh" 00009 #include "Rivet/Projections/LeadingParticlesFinalState.hh" 00010 00011 00012 namespace Rivet { 00013 00014 using namespace Cuts; 00015 00016 00017 /// ATLAS Z+jets in pp at 7 TeV 00018 class ATLAS_2011_I945498 : public Analysis { 00019 public: 00020 00021 /// Constructor 00022 ATLAS_2011_I945498() 00023 : Analysis("ATLAS_2011_I945498") 00024 { } 00025 00026 00027 /// Book histograms and initialise projections before the run 00028 void init() { 00029 00030 // Variable initialisation 00031 _isZeeSample = false; 00032 _isZmmSample = false; 00033 for (size_t chn = 0; chn < 3; ++chn) { 00034 weights_nj0[chn] = 0; 00035 weights_nj1[chn] = 0; 00036 weights_nj2[chn] = 0; 00037 weights_nj3[chn] = 0; 00038 weights_nj4[chn] = 0; 00039 } 00040 00041 // Set up projections 00042 FinalState fs; 00043 ZFinder zfinder_mu(fs, etaIn(-2.4, 2.4) & (pT >= 20*GeV), PID::MUON, 66*GeV, 116*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00044 addProjection(zfinder_mu, "ZFinder_mu"); 00045 00046 Cut cuts = ( etaIn(-2.47, -1.52) 00047 | etaIn(-1.37, 1.37) 00048 | etaIn( 1.52, 2.47) ) & (pT >= 20.0*GeV); 00049 00050 ZFinder zfinder_el(fs, cuts, PID::ELECTRON, 66*GeV, 116*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00051 addProjection(zfinder_el, "ZFinder_el"); 00052 00053 Cut cuts25_20 = etaIn(-2.5,2.5) & (pT >= 20.0*GeV); 00054 // For combined cross-sections (combined phase space + dressed level) 00055 ZFinder zfinder_comb_mu(fs, cuts25_20, PID::MUON, 66.0*GeV, 116.0*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00056 addProjection(zfinder_comb_mu, "ZFinder_comb_mu"); 00057 ZFinder zfinder_comb_el(fs, cuts25_20, PID::ELECTRON, 66.0*GeV, 116.0*GeV, 0.1, ZFinder::CLUSTERNODECAY); 00058 addProjection(zfinder_comb_el, "ZFinder_comb_el"); 00059 00060 // Define veto FS in order to prevent Z-decay products entering the jet algorithm 00061 VetoedFinalState remfs; 00062 remfs.addVetoOnThisFinalState(zfinder_el); 00063 remfs.addVetoOnThisFinalState(zfinder_mu); 00064 VetoedFinalState remfs_comb; 00065 remfs_comb.addVetoOnThisFinalState(zfinder_comb_el); 00066 remfs_comb.addVetoOnThisFinalState(zfinder_comb_mu); 00067 00068 FastJets jets(remfs, FastJets::ANTIKT, 0.4); 00069 jets.useInvisibles(); 00070 addProjection(jets, "jets"); 00071 FastJets jets_comb(remfs_comb, FastJets::ANTIKT, 0.4); 00072 jets_comb.useInvisibles(); 00073 addProjection(jets_comb, "jets_comb"); 00074 00075 // 0=el, 1=mu, 2=comb 00076 for (size_t chn = 0; chn < 3; ++chn) { 00077 _h_njet_incl[chn] = bookHisto1D(1, 1, chn+1); 00078 _h_njet_ratio[chn] = bookScatter2D(2, 1, chn+1); 00079 _h_ptjet[chn] = bookHisto1D(3, 1, chn+1); 00080 _h_ptlead[chn] = bookHisto1D(4, 1, chn+1); 00081 _h_ptseclead[chn] = bookHisto1D(5, 1, chn+1); 00082 _h_yjet[chn] = bookHisto1D(6, 1, chn+1); 00083 _h_ylead[chn] = bookHisto1D(7, 1, chn+1); 00084 _h_yseclead[chn] = bookHisto1D(8, 1, chn+1); 00085 _h_mass[chn] = bookHisto1D(9, 1, chn+1); 00086 _h_deltay[chn] = bookHisto1D(10, 1, chn+1); 00087 _h_deltaphi[chn] = bookHisto1D(11, 1, chn+1); 00088 _h_deltaR[chn] = bookHisto1D(12, 1, chn+1); 00089 } 00090 } 00091 00092 00093 // Jet selection criteria universal for electron and muon channel 00094 /// @todo Replace with a Cut passed to jetsByPt 00095 Jets selectJets(const ZFinder* zf, const FastJets* allJets) { 00096 const FourMomentum l1 = zf->constituents()[0].momentum(); 00097 const FourMomentum l2 = zf->constituents()[1].momentum(); 00098 Jets jets; 00099 foreach (const Jet& jet, allJets->jetsByPt(30*GeV)) { 00100 const FourMomentum jmom = jet.momentum(); 00101 if (jmom.absrap() < 4.4 && 00102 deltaR(l1, jmom) > 0.5 && deltaR(l2, jmom) > 0.5) { 00103 jets.push_back(jet); 00104 } 00105 } 00106 return jets; 00107 } 00108 00109 00110 /// Perform the per-event analysis 00111 void analyze(const Event& event) { 00112 const double weight = event.weight(); 00113 00114 vector<const ZFinder*> zfs; 00115 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_el"))); 00116 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_mu"))); 00117 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_comb_el"))); 00118 zfs.push_back(& (applyProjection<ZFinder>(event, "ZFinder_comb_mu"))); 00119 00120 vector<const FastJets*> fjs; 00121 fjs.push_back(& (applyProjection<FastJets>(event, "jets"))); 00122 fjs.push_back(& (applyProjection<FastJets>(event, "jets_comb"))); 00123 00124 // Determine what kind of MC sample this is 00125 const bool isZee = (zfs[0]->bosons().size() == 1) || (zfs[2]->bosons().size() == 1); 00126 const bool isZmm = (zfs[1]->bosons().size() == 1) || (zfs[3]->bosons().size() == 1); 00127 if (isZee) _isZeeSample = true; 00128 if (isZmm) _isZmmSample = true; 00129 00130 // Require exactly one electronic or muonic Z-decay in the event 00131 bool isZeemm = ( (zfs[0]->bosons().size() == 1 && zfs[1]->bosons().size() != 1) || 00132 (zfs[1]->bosons().size() == 1 && zfs[0]->bosons().size() != 1) ); 00133 bool isZcomb = ( (zfs[2]->bosons().size() == 1 && zfs[3]->bosons().size() != 1) || 00134 (zfs[3]->bosons().size() == 1 && zfs[2]->bosons().size() != 1) ); 00135 if (!isZeemm && !isZcomb) vetoEvent; 00136 00137 vector<int> zfIDs; 00138 vector<int> fjIDs; 00139 if (isZeemm) { 00140 int chn = zfs[0]->bosons().size() == 1 ? 0 : 1; 00141 zfIDs.push_back(chn); 00142 fjIDs.push_back(0); 00143 } 00144 if (isZcomb) { 00145 int chn = zfs[2]->bosons().size() == 1 ? 2 : 3; 00146 zfIDs.push_back(chn); 00147 fjIDs.push_back(1); 00148 } 00149 00150 for (size_t izf = 0; izf < zfIDs.size(); ++izf) { 00151 int zfID = zfIDs[izf]; 00152 int fjID = fjIDs[izf]; 00153 00154 int chn = zfID; 00155 if (zfID == 2 || zfID == 3) chn = 2; 00156 00157 Jets jets = selectJets(zfs[zfID], fjs[fjID]); 00158 00159 switch (jets.size()) { 00160 case 0: 00161 weights_nj0[chn] += weight; 00162 break; 00163 case 1: 00164 weights_nj0[chn] += weight; 00165 weights_nj1[chn] += weight; 00166 break; 00167 case 2: 00168 weights_nj0[chn] += weight; 00169 weights_nj1[chn] += weight; 00170 weights_nj2[chn] += weight; 00171 break; 00172 case 3: 00173 weights_nj0[chn] += weight; 00174 weights_nj1[chn] += weight; 00175 weights_nj2[chn] += weight; 00176 weights_nj3[chn] += weight; 00177 break; 00178 default: // >= 4 00179 weights_nj0[chn] += weight; 00180 weights_nj1[chn] += weight; 00181 weights_nj2[chn] += weight; 00182 weights_nj3[chn] += weight; 00183 weights_nj4[chn] += weight; 00184 } 00185 00186 // Require at least one jet 00187 if (jets.empty()) continue; 00188 00189 // Fill jet multiplicities 00190 for (size_t ijet = 1; ijet <= jets.size(); ++ijet) { 00191 _h_njet_incl[chn]->fill(ijet, weight); 00192 } 00193 00194 // Loop over selected jets, fill inclusive jet distributions 00195 for (size_t ijet = 0; ijet < jets.size(); ++ijet) { 00196 _h_ptjet[chn]->fill(jets[ijet].pT()/GeV, weight); 00197 _h_yjet [chn]->fill(fabs(jets[ijet].rapidity()), weight); 00198 } 00199 00200 // Leading jet histos 00201 const double ptlead = jets[0].pT()/GeV; 00202 const double yabslead = fabs(jets[0].rapidity()); 00203 _h_ptlead[chn]->fill(ptlead, weight); 00204 _h_ylead [chn]->fill(yabslead, weight); 00205 00206 if (jets.size() >= 2) { 00207 // Second jet histos 00208 const double pt2ndlead = jets[1].pT()/GeV; 00209 const double yabs2ndlead = fabs(jets[1].rapidity()); 00210 _h_ptseclead[chn] ->fill(pt2ndlead, weight); 00211 _h_yseclead [chn] ->fill(yabs2ndlead, weight); 00212 00213 // Dijet histos 00214 const double deltaphi = fabs(deltaPhi(jets[1], jets[0])); 00215 const double deltarap = fabs(jets[0].rapidity() - jets[1].rapidity()) ; 00216 const double deltar = fabs(deltaR(jets[0], jets[1], RAPIDITY)); 00217 const double mass = (jets[0].momentum() + jets[1].momentum()).mass(); 00218 _h_mass [chn] ->fill(mass/GeV, weight); 00219 _h_deltay [chn] ->fill(deltarap, weight); 00220 _h_deltaphi[chn] ->fill(deltaphi, weight); 00221 _h_deltaR [chn] ->fill(deltar, weight); 00222 } 00223 } 00224 } 00225 00226 00227 /// @name Ratio calculator util functions 00228 //@{ 00229 00230 /// Calculate the ratio, being careful about div-by-zero 00231 double ratio(double a, double b) { 00232 return (b != 0) ? a/b : 0; 00233 } 00234 00235 /// Calculate the ratio error, being careful about div-by-zero 00236 double ratio_err(double a, double b) { 00237 return (b != 0) ? sqrt(a/sqr(b) + sqr(a)/(b*b*b)) : 0; 00238 } 00239 00240 //@} 00241 00242 00243 void finalize() { 00244 // Fill ratio histograms 00245 for (size_t chn = 0; chn < 3; ++chn) { 00246 _h_njet_ratio[chn]->addPoint(1, ratio(weights_nj1[chn], weights_nj0[chn]), 0.5, ratio_err(weights_nj1[chn], weights_nj0[chn])); 00247 _h_njet_ratio[chn]->addPoint(2, ratio(weights_nj2[chn], weights_nj1[chn]), 0.5, ratio_err(weights_nj2[chn], weights_nj1[chn])); 00248 _h_njet_ratio[chn]->addPoint(3, ratio(weights_nj3[chn], weights_nj2[chn]), 0.5, ratio_err(weights_nj3[chn], weights_nj2[chn])); 00249 _h_njet_ratio[chn]->addPoint(4, ratio(weights_nj4[chn], weights_nj3[chn]), 0.5, ratio_err(weights_nj4[chn], weights_nj3[chn])); 00250 } 00251 00252 // Scale other histos 00253 for (size_t chn = 0; chn < 3; ++chn) { 00254 // For ee and mumu channels: normalize to Njet inclusive cross-section 00255 double xs = (chn == 2) ? crossSectionPerEvent()/picobarn : 1 / weights_nj0[chn]; 00256 // For inclusive MC sample(ee/mmu channels together) we want the single-lepton-flavor xsec 00257 if (_isZeeSample && _isZmmSample) xs /= 2; 00258 00259 // Special case histogram: always not normalized 00260 scale(_h_njet_incl[chn], (chn < 2) ? crossSectionPerEvent()/picobarn : xs); 00261 00262 scale(_h_ptjet[chn] , xs); 00263 scale(_h_ptlead[chn] , xs); 00264 scale(_h_ptseclead[chn], xs); 00265 scale(_h_yjet[chn] , xs); 00266 scale(_h_ylead[chn] , xs); 00267 scale(_h_yseclead[chn] , xs); 00268 scale(_h_deltaphi[chn] , xs); 00269 scale(_h_deltay[chn] , xs); 00270 scale(_h_deltaR[chn] , xs); 00271 scale(_h_mass[chn] , xs); 00272 } 00273 00274 } 00275 00276 //@} 00277 00278 00279 private: 00280 00281 bool _isZeeSample; 00282 bool _isZmmSample; 00283 00284 double weights_nj0[3]; 00285 double weights_nj1[3]; 00286 double weights_nj2[3]; 00287 double weights_nj3[3]; 00288 double weights_nj4[3]; 00289 00290 Scatter2DPtr _h_njet_ratio[3]; 00291 Histo1DPtr _h_njet_incl[3]; 00292 Histo1DPtr _h_ptjet[3]; 00293 Histo1DPtr _h_ptlead[3]; 00294 Histo1DPtr _h_ptseclead[3]; 00295 Histo1DPtr _h_yjet[3]; 00296 Histo1DPtr _h_ylead[3]; 00297 Histo1DPtr _h_yseclead[3]; 00298 Histo1DPtr _h_deltaphi[3]; 00299 Histo1DPtr _h_deltay[3]; 00300 Histo1DPtr _h_deltaR[3]; 00301 Histo1DPtr _h_mass[3]; 00302 00303 }; 00304 00305 00306 DECLARE_RIVET_PLUGIN(ATLAS_2011_I945498); 00307 00308 00309 } Generated on Tue Sep 30 2014 19:45:41 for The Rivet MC analysis system by ![]() |