MC_JetAnalysis.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 #include "Rivet/Analyses/MC_JetAnalysis.hh"
00003 #include "Rivet/Projections/FastJets.hh"
00004 #include "Rivet/Tools/Logging.hh"
00005 #include "Rivet/RivetAIDA.hh"
00006 
00007 namespace Rivet {
00008 
00009 
00010   MC_JetAnalysis::MC_JetAnalysis(const string& name,
00011                                  size_t njet,
00012                                  const string& jetpro_name,
00013                                  double jetptcut)
00014     : Analysis(name), m_njet(njet), m_jetpro_name(jetpro_name), m_jetptcut(jetptcut),
00015       _h_log10_d(njet, NULL), _h_log10_R(njet+1, NULL), _h_pT_jet(njet, NULL),
00016       _h_eta_jet(njet, NULL), _h_eta_jet_plus(njet), _h_eta_jet_minus(njet),
00017       _h_rap_jet(njet, NULL), _h_rap_jet_plus(njet), _h_rap_jet_minus(njet),
00018       _h_mass_jet(njet, NULL)
00019   {
00020     setNeedsCrossSection(true);
00021   }
00022 
00023 
00024 
00025   // Book histograms
00026   void MC_JetAnalysis::init() {
00027 
00028     for (size_t i=0; i < m_njet; ++i) {
00029       stringstream dname;
00030       dname << "log10_d_" << i << i+1;
00031 
00032       _h_log10_d[i] = bookHistogram1D(dname.str(), 50, 0.2, log10(0.5*sqrtS()));
00033 
00034       stringstream Rname;
00035       Rname << "log10_R_" << i;
00036       _h_log10_R[i] = bookDataPointSet(Rname.str(), 50, 0.2, log10(0.5*sqrtS()));
00037 
00038       stringstream pTname;
00039       pTname << "jet_pT_" << i+1;
00040       double pTmax = 1.0/(double(i)+2.0) * sqrtS()/GeV/2.0;
00041       int nbins_pT = 100/(i+1);
00042       _h_pT_jet[i] = bookHistogram1D(pTname.str(), logBinEdges(nbins_pT, 10.0, pTmax));
00043 
00044       stringstream massname;
00045       massname << "jet_mass_" << i+1;
00046       double mmax = 100.0;
00047       int nbins_m = 100/(i+1);
00048       _h_mass_jet[i] = bookHistogram1D(massname.str(), logBinEdges(nbins_m, 1.0, mmax));
00049 
00050       stringstream etaname;
00051       etaname << "jet_eta_" << i+1;
00052       _h_eta_jet[i] = bookHistogram1D(etaname.str(), i > 1 ? 25 : 50, -5.0, 5.0);
00053       _h_eta_jet_plus[i].reset(new LWH::Histogram1D(i > 1 ? 15 : 25, 0, 5));
00054       _h_eta_jet_minus[i].reset(new LWH::Histogram1D(i > 1 ? 15 : 25, 0, 5));
00055 
00056       stringstream rapname;
00057       rapname << "jet_y_" << i+1;
00058       _h_rap_jet[i] = bookHistogram1D(rapname.str(), i>1 ? 25 : 50, -5.0, 5.0);
00059       _h_rap_jet_plus[i].reset(new LWH::Histogram1D(i > 1 ? 15 : 25, 0, 5));
00060       _h_rap_jet_minus[i].reset(new LWH::Histogram1D(i > 1 ? 15 : 25, 0, 5));
00061 
00062       for (size_t j = i+1; j < m_njet; ++j) {
00063         std::pair<size_t, size_t> ij = std::make_pair(i, j);
00064 
00065         stringstream detaname;
00066         detaname << "jets_deta_" << i+1 << j+1;
00067         _h_deta_jets.insert(make_pair(ij, bookHistogram1D(detaname.str(), 25, -5.0, 5.0)));
00068 
00069         stringstream dRname;
00070         dRname << "jets_dR_" << i+1 << j+1;
00071         _h_dR_jets.insert(make_pair(ij, bookHistogram1D(dRname.str(), 25, 0.0, 5.0)));
00072       }
00073     }
00074     stringstream Rname;
00075     Rname << "log10_R_" << m_njet;
00076     _h_log10_R[m_njet] = bookDataPointSet(Rname.str(), 50, 0.2, log10(0.5*sqrtS()));
00077 
00078     _h_jet_multi_exclusive = bookHistogram1D("jet_multi_exclusive", m_njet+3, -0.5, m_njet+3-0.5);
00079     _h_jet_multi_inclusive = bookHistogram1D("jet_multi_inclusive", m_njet+3, -0.5, m_njet+3-0.5);
00080     _h_jet_multi_ratio = bookDataPointSet("jet_multi_ratio", m_njet+2, 0.5, m_njet+3-0.5);
00081     _h_jet_HT = bookHistogram1D("jet_HT", logBinEdges(50, m_jetptcut, sqrtS()/GeV/2.0));
00082   }
00083 
00084 
00085 
00086   // Do the analysis
00087   void MC_JetAnalysis::analyze(const Event & e) {
00088     const double weight = e.weight();
00089 
00090     const FastJets& jetpro = applyProjection<FastJets>(e, m_jetpro_name);
00091 
00092     // Jet resolutions and integrated jet rates
00093     const fastjet::ClusterSequence* seq = jetpro.clusterSeq();
00094     if (seq != NULL) {
00095       double previous_dij = 10.0;
00096       for (size_t i = 0; i < m_njet; ++i) {
00097         // Jet resolution i -> j
00098         double d_ij = log10(sqrt(seq->exclusive_dmerge_max(i)));
00099 
00100         // Fill differential jet resolution
00101         _h_log10_d[i]->fill(d_ij, weight);
00102 
00103         // Fill integrated jet resolution
00104         for (int ibin = 0; ibin < _h_log10_R[i]->size(); ++ibin) {
00105           IDataPoint* dp = _h_log10_R[i]->point(ibin);
00106           double dcut = dp->coordinate(0)->value();
00107           if (d_ij < dcut && previous_dij > dcut) {
00108             dp->coordinate(1)->setValue(dp->coordinate(1)->value() + weight);
00109           }
00110         }
00111         previous_dij = d_ij;
00112       }
00113       // One remaining integrated jet resolution
00114       for (int ibin = 0; ibin<_h_log10_R[m_njet]->size(); ++ibin) {
00115         IDataPoint* dp = _h_log10_R[m_njet]->point(ibin);
00116         double dcut = dp->coordinate(0)->value();
00117         if (previous_dij > dcut) {
00118           dp->coordinate(1)->setValue(dp->coordinate(1)->value() + weight);
00119         }
00120       }
00121     }
00122 
00123     const Jets& jets = jetpro.jetsByPt(m_jetptcut);
00124 
00125     // The remaining direct jet observables
00126     for (size_t i = 0; i < m_njet; ++i) {
00127       if (jets.size() < i+1) continue;
00128       _h_pT_jet[i]->fill(jets[i].momentum().pT()/GeV, weight);
00129       // Check for numerical precision issues with jet masses
00130       double m2_i = jets[i].momentum().mass2();
00131       if (m2_i < 0) {
00132         if (m2_i < -1e-4) {
00133           getLog() << Log::WARNING << "Jet mass2 is negative: " << m2_i << " GeV^2. "
00134                    << "Truncating to 0.0, assuming numerical precision is to blame." << endl;
00135         }
00136         m2_i = 0.0;
00137       }
00138 
00139       // Jet mass
00140       _h_mass_jet[i]->fill(sqrt(m2_i)/GeV, weight);
00141 
00142       // Jet eta
00143       const double eta_i = jets[i].momentum().eta();
00144       _h_eta_jet[i]->fill(eta_i, weight);
00145       if (eta_i > 0.0) {
00146         _h_eta_jet_plus[i]->fill(eta_i, weight);
00147       } else {
00148         _h_eta_jet_minus[i]->fill(fabs(eta_i), weight);
00149       }
00150 
00151       // Jet rapidity
00152       const double rap_i = jets[i].momentum().rapidity();
00153       _h_rap_jet[i]->fill(rap_i, weight);
00154       if (rap_i > 0.0) {
00155         _h_rap_jet_plus[i]->fill(rap_i, weight);
00156       } else {
00157         _h_rap_jet_minus[i]->fill(fabs(rap_i), weight);
00158       }
00159 
00160       // Inter-jet properties
00161       for (size_t j = i+1; j < m_njet; ++j) {
00162         if (jets.size() < j+1) continue;
00163         std::pair<size_t, size_t> ij = std::make_pair(i, j);
00164         double deta = jets[i].momentum().eta()-jets[j].momentum().eta();
00165         double dR = deltaR(jets[i].momentum(), jets[j].momentum());
00166         _h_deta_jets[ij]->fill(deta, weight);
00167         _h_dR_jets[ij]->fill(dR, weight);
00168       }
00169     }
00170     _h_jet_multi_exclusive->fill(jets.size(), weight);
00171 
00172     for (size_t i = 0; i < m_njet+2; ++i) {
00173       if (jets.size() >= i) {
00174         _h_jet_multi_inclusive->fill(i, weight);
00175       }
00176     }
00177 
00178     double HT=0.0;
00179     foreach (const Jet& jet, jets) {
00180       HT += jet.momentum().pT();
00181     }
00182     _h_jet_HT->fill(HT, weight);
00183   }
00184 
00185 
00186   // Finalize
00187   void MC_JetAnalysis::finalize() {
00188     for (size_t i = 0; i < m_njet; ++i) {
00189       scale(_h_log10_d[i], crossSection()/sumOfWeights());
00190       for (int ibin = 0; ibin<_h_log10_R[i]->size(); ++ibin) {
00191         IDataPoint* dp = _h_log10_R[i]->point(ibin);
00192         dp->coordinate(1)->setValue(dp->coordinate(1)->value()*crossSection()/sumOfWeights());
00193       }
00194 
00195       scale(_h_pT_jet[i], crossSection()/sumOfWeights());
00196       scale(_h_mass_jet[i], crossSection()/sumOfWeights());
00197       scale(_h_eta_jet[i], crossSection()/sumOfWeights());
00198       scale(_h_rap_jet[i], crossSection()/sumOfWeights());
00199 
00200       // Create eta/rapidity ratio plots
00201       stringstream etaname;
00202       etaname << "jet_eta_pmratio_" << i+1;
00203       histogramFactory().divide(histoPath(etaname.str()), *_h_eta_jet_plus[i], *_h_eta_jet_minus[i]);
00204       stringstream rapname;
00205       rapname << "jet_y_pmratio_" << i+1;
00206       histogramFactory().divide(histoPath(rapname.str()), *_h_rap_jet_plus[i], *_h_rap_jet_minus[i]);
00207     }
00208 
00209     for (int ibin = 0; ibin < _h_log10_R[m_njet]->size(); ++ibin) {
00210       IDataPoint* dp =_h_log10_R[m_njet]->point(ibin);
00211       dp->coordinate(1)->setValue(dp->coordinate(1)->value()*crossSection()/sumOfWeights());
00212     }
00213 
00214     // Scale the d{eta,R} histograms
00215     map<pair<size_t, size_t>, AIDA::IHistogram1D*>::iterator it;
00216     for (it = _h_deta_jets.begin(); it != _h_deta_jets.end(); ++it) {
00217       scale(it->second, crossSection()/sumOfWeights());
00218     }
00219     for (it = _h_dR_jets.begin(); it != _h_dR_jets.end(); ++it) {
00220       scale(it->second, crossSection()/sumOfWeights());
00221     }
00222 
00223     // Fill inclusive jet multi ratio
00224     int Nbins = _h_jet_multi_inclusive->axis().bins();
00225     std::vector<double> ratio(Nbins-1, 0.0);
00226     std::vector<double> err(Nbins-1, 0.0);
00227     for (int i = 0; i < Nbins-1; ++i) {
00228       if (_h_jet_multi_inclusive->binHeight(i) > 0.0 && _h_jet_multi_inclusive->binHeight(i+1) > 0.0) {
00229         ratio[i] = _h_jet_multi_inclusive->binHeight(i+1)/_h_jet_multi_inclusive->binHeight(i);
00230         double relerr_i = _h_jet_multi_inclusive->binError(i)/_h_jet_multi_inclusive->binHeight(i);
00231         double relerr_j = _h_jet_multi_inclusive->binError(i+1)/_h_jet_multi_inclusive->binHeight(i+1);
00232         err[i] = ratio[i] * (relerr_i + relerr_j);
00233       }
00234     }
00235     _h_jet_multi_ratio->setCoordinate(1, ratio, err);
00236 
00237     scale(_h_jet_multi_exclusive, crossSection()/sumOfWeights());
00238     scale(_h_jet_multi_inclusive, crossSection()/sumOfWeights());
00239     scale(_h_jet_HT, crossSection()/sumOfWeights());
00240   }
00241 
00242 
00243 }