00001 #ifndef RIVET_MATH_VECTOR3
00002 #define RIVET_MATH_VECTOR3
00003
00004 #include "Rivet/Math/MathHeader.hh"
00005 #include "Rivet/Math/MathUtils.hh"
00006 #include "Rivet/Math/VectorN.hh"
00007
00008 namespace Rivet {
00009
00010
00011 class Vector3;
00012 typedef Vector3 ThreeVector;
00013 class Matrix3;
00014
00015 Vector3 multiply(const double, const Vector3&);
00016 Vector3 multiply(const Vector3&, const double);
00017 Vector3 add(const Vector3&, const Vector3&);
00018 Vector3 operator*(const double, const Vector3&);
00019 Vector3 operator*(const Vector3&, const double);
00020 Vector3 operator/(const Vector3&, const double);
00021 Vector3 operator+(const Vector3&, const Vector3&);
00022 Vector3 operator-(const Vector3&, const Vector3&);
00023
00024
00025
00026 class Vector3 : public Vector<3> {
00027
00028 friend class Matrix3;
00029 friend Vector3 multiply(const double, const Vector3&);
00030 friend Vector3 multiply(const Vector3&, const double);
00031 friend Vector3 add(const Vector3&, const Vector3&);
00032 friend Vector3 subtract(const Vector3&, const Vector3&);
00033
00034 public:
00035 Vector3() : Vector<3>() { }
00036
00037 template<typename V3>
00038 Vector3(const V3& other) {
00039 this->setX(other.x());
00040 this->setY(other.y());
00041 this->setZ(other.z());
00042 }
00043
00044 Vector3(const Vector<3>& other) {
00045 this->setX(other.get(0));
00046 this->setY(other.get(1));
00047 this->setZ(other.get(2));
00048 }
00049
00050 Vector3(double x, double y, double z) {
00051 this->setX(x);
00052 this->setY(y);
00053 this->setZ(z);
00054 }
00055
00056 ~Vector3() { }
00057
00058 public:
00059 static Vector3 mkX() { return Vector3(1,0,0); }
00060 static Vector3 mkY() { return Vector3(0,1,0); }
00061 static Vector3 mkZ() { return Vector3(0,0,1); }
00062
00063 public:
00064 double x() const { return get(0); }
00065 double y() const { return get(1); }
00066 double z() const { return get(2); }
00067 Vector3& setX(double x) { set(0, x); return *this; }
00068 Vector3& setY(double y) { set(1, y); return *this; }
00069 Vector3& setZ(double z) { set(2, z); return *this; }
00070
00071 double dot(const Vector3& v) const {
00072 return _vec.dot(v._vec);
00073 }
00074
00075 Vector3 cross(const Vector3& v) const {
00076 Vector3 result;
00077 result._vec = _vec.cross(v._vec);
00078 return result;
00079 }
00080
00081 double angle(const Vector3& v) const {
00082 double localDotOther = unit().dot(v.unit());
00083 if(Rivet::isZero(localDotOther - 1.0)) return 0.0;
00084 return acos( localDotOther );
00085 }
00086
00087 Vector3 unit() const {
00088
00089 if (isZero()) return *this;
00090 else return *this * 1.0/this->mod();
00091 }
00092
00093 double polarRadius2() const {
00094 return x()*x() + y()*y();
00095 }
00096
00097
00098 double perp2() const {
00099 return polarRadius2();
00100 }
00101
00102
00103 double rho2() const {
00104 return polarRadius2();
00105 }
00106
00107 double polarRadius() const {
00108 return sqrt(polarRadius2());
00109 }
00110
00111
00112 double perp() const {
00113 return polarRadius();
00114 }
00115
00116
00117 double rho() const {
00118 return polarRadius();
00119 }
00120
00121
00122 double azimuthalAngle(const PhiMapping mapping = ZERO_2PI) const {
00123
00124 if (Rivet::isZero(mod2())) return 0.0;
00125
00126
00127 double value = atan2( y(), x() );
00128 if (value > 2*PI || value < -2*PI){
00129 value = fmod(value, 2*PI);
00130 }
00131 if (value <= -PI) value += 2*PI;
00132 if (value > PI) value -= 2*PI;
00133
00134
00135 switch (mapping) {
00136 case MINUSPI_PLUSPI:
00137 assert(value > -PI && value <= PI);
00138 return value;
00139 case ZERO_2PI:
00140 if (value >= 0) {
00141 assert(value >= 0 && value < 2*PI);
00142 return value;
00143 } else if (Rivet::isZero(value)) {
00144 value = 0.0;
00145 return value;
00146 } else {
00147 value = 2*PI + value;
00148 assert(value >= 0 && value < 2*PI);
00149 return value;
00150 }
00151 default:
00152 throw std::runtime_error("The specified phi mapping scheme is not yet implemented");
00153 }
00154 }
00155
00156
00157 double phi(const PhiMapping mapping = ZERO_2PI) const {
00158 return azimuthalAngle(mapping);
00159 }
00160
00161
00162 double polarAngle() const {
00163
00164 double polarangle = atan2(polarRadius(), z());
00165 assert(polarangle >= -PI && polarangle <= PI);
00166 return polarangle;
00167 }
00168
00169
00170 double theta() const {
00171 return polarAngle();
00172 }
00173
00174
00175
00176 double pseudorapidity() const {
00177 return -std::log(tan( 0.5 * polarAngle() ));
00178 }
00179
00180
00181 double eta() const {
00182 return pseudorapidity();
00183 }
00184
00185 public:
00186 Vector3& operator*=(const double a) {
00187 _vec = multiply(a, *this)._vec;
00188 return *this;
00189 }
00190
00191 Vector3& operator/=(const double a) {
00192 _vec = multiply(1.0/a, *this)._vec;
00193 return *this;
00194 }
00195
00196 Vector3& operator+=(const Vector3& v) {
00197 _vec = add(*this, v)._vec;
00198 return *this;
00199 }
00200
00201 Vector3& operator-=(const Vector3& v) {
00202 _vec = subtract(*this, v)._vec;
00203 return *this;
00204 }
00205
00206 Vector3 operator-() const {
00207 Vector3 rtn;
00208 rtn._vec = -_vec;
00209 return rtn;
00210 }
00211
00212 };
00213
00214
00215
00216 inline double dot(const Vector3& a, const Vector3& b) {
00217 return a.dot(b);
00218 }
00219
00220 inline Vector3 cross(const Vector3& a, const Vector3& b) {
00221 return a.cross(b);
00222 }
00223
00224 inline Vector3 multiply(const double a, const Vector3& v) {
00225 Vector3 result;
00226 result._vec = a * v._vec;
00227 return result;
00228 }
00229
00230 inline Vector3 multiply(const Vector3& v, const double a) {
00231 return multiply(a, v);
00232 }
00233
00234 inline Vector3 operator*(const double a, const Vector3& v) {
00235 return multiply(a, v);
00236 }
00237
00238 inline Vector3 operator*(const Vector3& v, const double a) {
00239 return multiply(a, v);
00240 }
00241
00242 inline Vector3 operator/(const Vector3& v, const double a) {
00243 return multiply(1.0/a, v);
00244 }
00245
00246 inline Vector3 add(const Vector3& a, const Vector3& b) {
00247 Vector3 result;
00248 result._vec = a._vec + b._vec;
00249 return result;
00250 }
00251
00252 inline Vector3 subtract(const Vector3& a, const Vector3& b) {
00253 Vector3 result;
00254 result._vec = a._vec - b._vec;
00255 return result;
00256 }
00257
00258 inline Vector3 operator+(const Vector3& a, const Vector3& b) {
00259 return add(a, b);
00260 }
00261
00262 inline Vector3 operator-(const Vector3& a, const Vector3& b) {
00263 return subtract(a, b);
00264 }
00265
00266
00267
00268
00269 inline double angle(const Vector3& a, const Vector3& b) {
00270 return a.angle(b);
00271 }
00272
00273
00274 inline double polarRadius2(const Vector3& v) {
00275 return v.polarRadius2();
00276 }
00277
00278 inline double perp2(const Vector3& v) {
00279 return v.perp2();
00280 }
00281
00282 inline double rho2(const Vector3& v) {
00283 return v.rho2();
00284 }
00285
00286
00287 inline double polarRadius(const Vector3& v) {
00288 return v.polarRadius();
00289 }
00290
00291 inline double perp(const Vector3& v) {
00292 return v.perp();
00293 }
00294
00295 inline double rho(const Vector3& v) {
00296 return v.rho();
00297 }
00298
00299
00300
00301
00302 inline double azimuthalAngle(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
00303 return v.azimuthalAngle(mapping);
00304 }
00305
00306 inline double phi(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
00307 return v.phi(mapping);
00308 }
00309
00310
00311 inline double polarAngle(const Vector3& v) {
00312 return v.polarAngle();
00313 }
00314
00315 inline double theta(const Vector3& v) {
00316 return v.theta();
00317 }
00318
00319
00320 inline double pseudorapidity(const Vector3& v) {
00321 return v.pseudorapidity();
00322 }
00323
00324 inline double eta(const Vector3& v) {
00325 return v.eta();
00326 }
00327
00328
00329
00330
00331
00332
00333
00334 inline double deltaR(const Vector3& a, const Vector3& b) {
00335 return deltaR(a.pseudorapidity(), a.azimuthalAngle(),
00336 b.pseudorapidity(), b.azimuthalAngle());
00337 }
00338
00339
00340
00341 inline double deltaR(const Vector3& v, double eta2, double phi2) {
00342 return deltaR(v.pseudorapidity(), v.azimuthalAngle(), eta2, phi2);
00343 }
00344
00345
00346
00347 inline double deltaR(double eta1, double phi1, const Vector3& v) {
00348 return deltaR(eta1, phi1, v.pseudorapidity(), v.azimuthalAngle());
00349 }
00350
00351
00352 }
00353
00354 #endif