Vector3.hh

Go to the documentation of this file.
00001 #ifndef RIVET_MATH_VECTOR3
00002 #define RIVET_MATH_VECTOR3
00003 
00004 #include "Rivet/Math/MathHeader.hh"
00005 #include "Rivet/Math/MathUtils.hh"
00006 #include "Rivet/Math/VectorN.hh"
00007 
00008 namespace Rivet {
00009 
00010 
00011   class Vector3;
00012   typedef Vector3 ThreeVector;
00013   class Matrix3;
00014 
00015   Vector3 multiply(const double, const Vector3&);
00016   Vector3 multiply(const Vector3&, const double);
00017   Vector3 add(const Vector3&, const Vector3&);
00018   Vector3 operator*(const double, const Vector3&);
00019   Vector3 operator*(const Vector3&, const double);
00020   Vector3 operator/(const Vector3&, const double);
00021   Vector3 operator+(const Vector3&, const Vector3&);
00022   Vector3 operator-(const Vector3&, const Vector3&);
00023 
00024 
00025 
00026   class Vector3 : public Vector<3> {
00027 
00028     friend class Matrix3;
00029     friend Vector3 multiply(const double, const Vector3&);
00030     friend Vector3 multiply(const Vector3&, const double);
00031     friend Vector3 add(const Vector3&, const Vector3&);
00032     friend Vector3 subtract(const Vector3&, const Vector3&);
00033 
00034   public:
00035     Vector3() : Vector<3>() { }
00036 
00037     template<typename V3>
00038     Vector3(const V3& other) {
00039       this->setX(other.x());
00040       this->setY(other.y());
00041       this->setZ(other.z());
00042     }
00043 
00044     Vector3(const Vector<3>& other) {
00045       this->setX(other.get(0));
00046       this->setY(other.get(1));
00047       this->setZ(other.get(2));
00048     }
00049 
00050     Vector3(double x, double y, double z) {
00051       this->setX(x);
00052       this->setY(y);
00053       this->setZ(z);
00054     }
00055 
00056     ~Vector3() { }
00057 
00058   public:
00059     static Vector3 mkX() { return Vector3(1,0,0); }
00060     static Vector3 mkY() { return Vector3(0,1,0); }
00061     static Vector3 mkZ() { return Vector3(0,0,1); }
00062 
00063   public:
00064     double x() const { return get(0); }
00065     double y() const { return get(1); }
00066     double z() const { return get(2); }
00067     Vector3& setX(double x) { set(0, x); return *this; }
00068     Vector3& setY(double y) { set(1, y); return *this; }
00069     Vector3& setZ(double z) { set(2, z); return *this; }
00070 
00071     double dot(const Vector3& v) const {
00072       return _vec.dot(v._vec);
00073     }
00074 
00075     Vector3 cross(const Vector3& v) const {
00076       Vector3 result;
00077       result._vec = _vec.cross(v._vec);
00078       return result;
00079     }
00080 
00081     double angle(const Vector3& v) const {
00082       double localDotOther = unit().dot(v.unit());
00083       if(Rivet::isZero(localDotOther - 1.0)) return 0.0;
00084       return acos( localDotOther );
00085     }
00086 
00087     Vector3 unit() const {
00088       /// @todo What to do in this situation?
00089       if (isZero()) return *this;
00090       else return *this * 1.0/this->mod();
00091     }
00092 
00093     double polarRadius2() const {
00094       return x()*x() + y()*y();
00095     }
00096 
00097     /// Synonym for polarRadius2
00098     double perp2() const {
00099       return polarRadius2();
00100     }
00101 
00102     /// Synonym for polarRadius2
00103     double rho2() const {
00104       return polarRadius2();
00105     }
00106 
00107     double polarRadius() const {
00108       return sqrt(polarRadius2());
00109     }
00110 
00111     /// Synonym for polarRadius
00112     double perp() const {
00113       return polarRadius();
00114     }
00115 
00116     /// Synonym for polarRadius
00117     double rho() const {
00118       return polarRadius();
00119     }
00120 
00121     /// Angle subtended by the vector's projection in x-y and the x-axis.
00122     double azimuthalAngle(const PhiMapping mapping = ZERO_2PI) const {
00123       // If this is a null vector, return zero rather than let atan2 set an error state
00124       if (Rivet::isZero(mod2())) return 0.0;
00125 
00126       // Calculate the arctan and correct for numerical boundary cases
00127       double value = atan2( y(), x() );
00128       if (value > 2*PI || value < -2*PI){
00129         value = fmod(value, 2*PI);
00130       }
00131       if (value <= -PI) value += 2*PI;
00132       if (value >   PI) value -= 2*PI;
00133 
00134       // Return in the requested range
00135       switch (mapping) {
00136       case MINUSPI_PLUSPI:
00137         assert(value > -PI && value <= PI);
00138         return value;
00139       case ZERO_2PI:
00140         if (value >= 0) {
00141           assert(value >= 0 && value < 2*PI);
00142           return value;
00143         } else if (Rivet::isZero(value)) {
00144           value = 0.0;
00145           return value;
00146         } else {
00147           value = 2*PI + value;
00148           assert(value >= 0 && value < 2*PI);
00149           return value;
00150         }
00151       default:
00152         throw std::runtime_error("The specified phi mapping scheme is not yet implemented");
00153       }
00154     }
00155  
00156     /// Synonym for azimuthalAngle.
00157     double phi(const PhiMapping mapping = ZERO_2PI) const {
00158       return azimuthalAngle(mapping);
00159     }
00160 
00161     /// Angle subtended by the vector and the z-axis.
00162     double polarAngle() const {
00163       // Get number beween [0,PI]
00164       double polarangle = atan2(polarRadius(), z());
00165       assert(polarangle >= -PI && polarangle <= PI);
00166       return polarangle;
00167     }
00168 
00169     /// Synonym for polarAngle
00170     double theta() const {
00171       return polarAngle();
00172     }
00173 
00174     /// Purely geometric approximation to rapidity; exact for massless particles
00175     /// and in the central region.
00176     double pseudorapidity() const {
00177       return -std::log(tan( 0.5 * polarAngle() ));
00178     }
00179 
00180     /// Synonym for pseudorapidity.
00181     double eta() const {
00182       return pseudorapidity();
00183     }
00184 
00185   public:
00186     Vector3& operator*=(const double a) {
00187       _vec = multiply(a, *this)._vec;
00188       return *this;
00189     }
00190 
00191     Vector3& operator/=(const double a) {
00192       _vec = multiply(1.0/a, *this)._vec;
00193       return *this;
00194     }
00195 
00196     Vector3& operator+=(const Vector3& v) {
00197       _vec = add(*this, v)._vec;
00198       return *this;
00199     }
00200 
00201     Vector3& operator-=(const Vector3& v) {
00202       _vec = subtract(*this, v)._vec;
00203       return *this;
00204     }
00205 
00206     Vector3 operator-() const {
00207       Vector3 rtn;
00208       rtn._vec = -_vec;
00209       return rtn;
00210     }
00211 
00212   };
00213 
00214 
00215 
00216   inline double dot(const Vector3& a, const Vector3& b) {
00217     return a.dot(b);
00218   }
00219 
00220   inline Vector3 cross(const Vector3& a, const Vector3& b) {
00221     return a.cross(b);
00222   }
00223 
00224   inline Vector3 multiply(const double a, const Vector3& v) {
00225     Vector3 result;
00226     result._vec = a * v._vec;
00227     return result;
00228   }
00229 
00230   inline Vector3 multiply(const Vector3& v, const double a) {
00231     return multiply(a, v);
00232   }
00233 
00234   inline Vector3 operator*(const double a, const Vector3& v) {
00235     return multiply(a, v);
00236   }
00237 
00238   inline Vector3 operator*(const Vector3& v, const double a) {
00239     return multiply(a, v);
00240   }
00241 
00242   inline Vector3 operator/(const Vector3& v, const double a) {
00243     return multiply(1.0/a, v);
00244   }
00245 
00246   inline Vector3 add(const Vector3& a, const Vector3& b) {
00247     Vector3 result;
00248     result._vec = a._vec + b._vec;
00249     return result;
00250   }
00251 
00252   inline Vector3 subtract(const Vector3& a, const Vector3& b) {
00253     Vector3 result;
00254     result._vec = a._vec - b._vec;
00255     return result;
00256   }
00257 
00258   inline Vector3 operator+(const Vector3& a, const Vector3& b) {
00259     return add(a, b);
00260   }
00261 
00262   inline Vector3 operator-(const Vector3& a, const Vector3& b) {
00263     return subtract(a, b);
00264   }
00265 
00266   // More physicsy coordinates etc.
00267 
00268   /// Angle (in radians) between two 3-vectors.
00269   inline double angle(const Vector3& a, const Vector3& b) {
00270     return a.angle(b);
00271   }
00272 
00273   /// Calculate transverse length sq. \f$ \rho^2 \f$ of a 3-vector.
00274   inline double polarRadius2(const Vector3& v) {
00275     return v.polarRadius2();
00276   }
00277   /// Synonym for polarRadius2.
00278   inline double perp2(const Vector3& v) {
00279     return v.perp2();
00280   }
00281   /// Synonym for polarRadius2.
00282   inline double rho2(const Vector3& v) {
00283     return v.rho2();
00284   }
00285 
00286   /// Calculate transverse length \f$ \rho \f$ of a 3-vector.
00287   inline double polarRadius(const Vector3& v) {
00288     return v.polarRadius();
00289   }
00290   /// Synonym for polarRadius.
00291   inline double perp(const Vector3& v) {
00292     return v.perp();
00293   }
00294   /// Synonym for polarRadius.
00295   inline double rho(const Vector3& v) {
00296     return v.rho();
00297   }
00298 
00299 
00300   /// @brief Calculate azimuthal angle of a 3-vector.
00301   /// Returns a number in (-pi, pi] or in [0, 2pi) according to the mapping scheme selected
00302   inline double azimuthalAngle(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
00303     return v.azimuthalAngle(mapping);
00304   }
00305   /// Synonym for azimuthalAngle.
00306   inline double phi(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
00307     return v.phi(mapping);
00308   }
00309 
00310   /// Calculate polar angle of a 3-vector.
00311   inline double polarAngle(const Vector3& v) {
00312     return v.polarAngle();
00313   }
00314   /// Synonym for polarAngle.
00315   inline double theta(const Vector3& v) {
00316     return v.theta();
00317   }
00318 
00319   /// Calculate pseudorapidity of a 3-vector.
00320   inline double pseudorapidity(const Vector3& v) {
00321     return v.pseudorapidity();
00322   }
00323   /// Synonym for pseudorapidity.
00324   inline double eta(const Vector3& v) {
00325     return v.eta();
00326   }
00327 
00328 
00329   /////////////////////////////////////////////////////
00330 
00331 
00332   /// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two
00333   /// spatial vectors.
00334   inline double deltaR(const Vector3& a, const Vector3& b) {
00335     return deltaR(a.pseudorapidity(), a.azimuthalAngle(),
00336                   b.pseudorapidity(), b.azimuthalAngle());
00337   }
00338 
00339   /// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two
00340   /// spatial vectors.
00341   inline double deltaR(const Vector3& v, double eta2, double phi2) {
00342     return deltaR(v.pseudorapidity(), v.azimuthalAngle(), eta2, phi2);
00343   }
00344 
00345   /// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two
00346   /// spatial vectors.
00347   inline double deltaR(double eta1, double phi1, const Vector3& v) {
00348     return deltaR(eta1, phi1, v.pseudorapidity(), v.azimuthalAngle());
00349   }
00350 
00351 
00352 }
00353 
00354 #endif