Classes | |
class | ParticleNameMap |
Typedefs | |
typedef std::map< int, std::string > | ParticleIdMap |
typedef std::map< std::string, int > | ParticleLookupMap |
Enumerations | |
enum | location { nj = 1, nq3, nq2, nq1, nl, nr, n, n8, n9, n10 } |
Functions | |
unsigned short | digit (location loc, const int &pid) |
return the digit at a named location in the PID | |
int | fundamentalID (const int &pid) |
extract fundamental ID (1-100) if this is a "fundamental" particle | |
int | extraBits (const int &pid) |
if this is a fundamental particle, does it have a valid antiparticle? | |
int | Z (const int &pid) |
int | A (const int &pid) |
int | lambda (const int &pid) |
ParticleNameMap const & | ParticleNameInit () |
void | writeParticleNameLine (int i, std::ostream &os) |
ParticleNameMap const & | getParticleNameMap () |
bool | validParticleName (const int &pid) |
bool | validParticleName (const std::string &s) |
std::string | particleName (const int &pid) |
int | particleName (const std::string &s) |
void | listParticleNames (std::ostream &os) |
PID operations on Rivet::Particle wrapper | |
int | abspid (const int &pid) |
absolute value of particle ID | |
bool | isValid (const int &pid) |
is this a valid ID? | |
bool | isMeson (const int &pid) |
is this a valid meson ID? | |
bool | isBaryon (const int &pid) |
is this a valid baryon ID? | |
bool | isDiQuark (const int &pid) |
is this a valid diquark ID? | |
bool | isHadron (const int &pid) |
is this a valid hadron ID? | |
bool | isLepton (const int &pid) |
is this a valid lepton ID? | |
bool | isNucleus (const int &pid) |
is this a valid ion ID? | |
bool | isPentaquark (const int &pid) |
is this a valid pentaquark ID? | |
bool | isSUSY (const int &pid) |
is this a valid SUSY ID? | |
bool | isRhadron (const int &pid) |
is this a valid R-hadron ID? | |
bool | hasUp (const int &pid) |
does this particle contain an up quark? | |
bool | hasDown (const int &pid) |
does this particle contain a down quark? | |
bool | hasStrange (const int &pid) |
does this particle contain a strange quark? | |
bool | hasCharm (const int &pid) |
does this particle contain a charm quark? | |
bool | hasBottom (const int &pid) |
does this particle contain a bottom quark? | |
bool | hasTop (const int &pid) |
does this particle contain a top quark? | |
int | jSpin (const int &pid) |
jSpin returns 2J+1, where J is the total spin | |
int | sSpin (const int &pid) |
sSpin returns 2S+1, where S is the spin | |
int | lSpin (const int &pid) |
lSpin returns 2L+1, where L is the orbital angular momentum | |
int | threeCharge (const int &pid) |
return 3 times the charge (3 x quark charge is an int) | |
double | charge (const int &pid) |
return 3 times the charge (3 x quark charge is an int) | |
PID operations on Rivet::Particle wrapper | |
int | abspid (const Particle &p) |
absolute value of particle ID | |
bool | isMeson (const Particle &p) |
is this a valid meson ID? | |
bool | isBaryon (const Particle &p) |
is this a valid baryon ID? | |
bool | isDiQuark (const Particle &p) |
is this a valid diquark ID? | |
bool | isHadron (const Particle &p) |
is this a valid hadron ID? | |
bool | isLepton (const Particle &p) |
is this a valid lepton ID? | |
bool | isNucleus (const Particle &p) |
is this a valid ion ID? | |
bool | isPentaquark (const Particle &p) |
is this a valid pentaquark ID? | |
bool | isSUSY (const Particle &p) |
is this a valid SUSY ID? | |
bool | isRhadron (const Particle &p) |
is this a valid R-hadron ID? | |
bool | hasUp (const Particle &p) |
does this particle contain an up quark? | |
bool | hasDown (const Particle &p) |
does this particle contain a down quark? | |
bool | hasStrange (const Particle &p) |
does this particle contain a strange quark? | |
bool | hasCharm (const Particle &p) |
does this particle contain a charm quark? | |
bool | hasBottom (const Particle &p) |
does this particle contain a bottom quark? | |
bool | hasTop (const Particle &p) |
does this particle contain a top quark? | |
int | jSpin (const Particle &p) |
jSpin returns 2J+1, where J is the total spin | |
int | sSpin (const Particle &p) |
sSpin returns 2S+1, where S is the spin | |
int | lSpin (const Particle &p) |
lSpin returns 2L+1, where L is the orbital angular momentum | |
int | threeCharge (const Particle &p) |
return 3 times the charge (3 x quark charge is an int) | |
double | charge (const Particle &p) |
return 3 times the charge (3 x quark charge is an int) |
typedef std::map< int, std::string > ParticleIdMap |
Definition at line 34 of file ParticleName.cc.
typedef std::map< std::string, int > ParticleLookupMap |
Definition at line 35 of file ParticleName.cc.
enum location |
int Rivet::PID::A | ( | const int & | pid | ) |
Definition at line 79 of file ParticleIdUtils.cc.
References abspid(), and isNucleus().
Referenced by Rivet::diagonalize().
00080 { 00081 // a proton can also be a Hydrogen nucleus 00082 if( abspid(pid) == 2212 ) { return 1; } 00083 if( isNucleus(pid) ) return (abspid(pid)/10)%1000; 00084 return 0; 00085 }
int Rivet::PID::abspid | ( | const Particle & | p | ) | [inline] |
absolute value of particle ID
if this is a nucleus (ion), get A Ion numbers are +/- 10LZZZAAAI. if this is a nucleus (ion), get Z Ion numbers are +/- 10LZZZAAAI. if this is a nucleus (ion), get nLambda Ion numbers are +/- 10LZZZAAAI.
Definition at line 116 of file ParticleIdUtils.hh.
References abspid(), and Particle::pdgId().
00116 { return abspid(p.pdgId()); }
int abspid | ( | const int & | pid | ) |
absolute value of particle ID
Definition at line 35 of file ParticleIdUtils.cc.
Referenced by A(), abspid(), digit(), extraBits(), fundamentalID(), isBaryon(), isDiQuark(), isMeson(), isNucleus(), jSpin(), lambda(), threeCharge(), and Z().
double Rivet::PID::charge | ( | const Particle & | p | ) | [inline] |
return 3 times the charge (3 x quark charge is an int)
Definition at line 160 of file ParticleIdUtils.hh.
References threeCharge().
00160 { return 3.0 * threeCharge(p); }
double Rivet::PID::charge | ( | const int & | pid | ) | [inline] |
return 3 times the charge (3 x quark charge is an int)
Definition at line 91 of file ParticleIdUtils.hh.
References threeCharge().
Referenced by threeCharge().
00091 { return 3.0 * threeCharge(pid); }
unsigned short digit | ( | location | loc, | |
const int & | pid | |||
) |
return the digit at a named location in the PID
Definition at line 47 of file ParticleIdUtils.cc.
References abspid().
Referenced by fundamentalID(), hasBottom(), hasCharm(), hasDown(), hasStrange(), hasTop(), hasUp(), isBaryon(), isDiQuark(), isMeson(), isNucleus(), isPentaquark(), isRhadron(), isSUSY(), lambda(), lSpin(), sSpin(), and threeCharge().
00048 { 00049 // PID digits (base 10) are: n nr nl nq1 nq2 nq3 nj 00050 // the location enum provides a convenient index into the PID 00051 int numerator = (int) std::pow(10.0,(loc-1)); 00052 return (abspid(pid)/numerator)%10; 00053 }
int extraBits | ( | const int & | pid | ) |
if this is a fundamental particle, does it have a valid antiparticle?
returns everything beyond the 7th digit (e.g. outside the standard numbering scheme)
Definition at line 41 of file ParticleIdUtils.cc.
References abspid().
Referenced by fundamentalID(), hasBottom(), hasCharm(), hasDown(), hasStrange(), hasTop(), hasUp(), isBaryon(), isDiQuark(), isHadron(), isLepton(), isMeson(), isPentaquark(), isRhadron(), isSUSY(), isValid(), jSpin(), and threeCharge().
00042 { 00043 return abspid(pid)/10000000; 00044 }
int fundamentalID | ( | const int & | pid | ) |
extract fundamental ID (1-100) if this is a "fundamental" particle
Definition at line 57 of file ParticleIdUtils.cc.
References abspid(), digit(), extraBits(), nq1, and nq2.
Referenced by hasBottom(), hasCharm(), hasDown(), hasStrange(), hasTop(), hasUp(), isBaryon(), isDiQuark(), isLepton(), isMeson(), isSUSY(), isValid(), jSpin(), and threeCharge().
00058 { 00059 if( extraBits(pid) > 0 ) return 0; 00060 if( digit(nq2,pid) == 0 && digit(nq1,pid) == 0) { 00061 return abspid(pid)%10000; 00062 } else if( abspid(pid) <= 100 ) { 00063 return abspid(pid); 00064 } else { 00065 return 0; 00066 } 00067 }
ParticleNameMap const& Rivet::PID::getParticleNameMap | ( | ) |
Definition at line 1632 of file ParticleName.cc.
References ParticleNameInit().
Referenced by particleName(), and validParticleName().
01633 { 01634 static ParticleNameMap const & pmap = ParticleNameInit(); 01635 return pmap; 01636 } // getPartcleIdMap()
bool Rivet::PID::hasBottom | ( | const Particle & | p | ) | [inline] |
does this particle contain a bottom quark?
Definition at line 146 of file ParticleIdUtils.hh.
References hasBottom(), and Particle::pdgId().
00146 { return hasBottom(p.pdgId()); }
bool hasBottom | ( | const int & | pid | ) |
does this particle contain a bottom quark?
Definition at line 318 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasBottom().
00319 { 00320 if( extraBits(pid) > 0 ) { return false; } 00321 if( fundamentalID(pid) > 0 ) { return false; } 00322 if( digit(nq3,pid) == 5 || digit(nq2,pid) == 5 || digit(nq1,pid) == 5 ) { return true; } 00323 return false; 00324 }
bool Rivet::PID::hasCharm | ( | const Particle & | p | ) | [inline] |
does this particle contain a charm quark?
Definition at line 144 of file ParticleIdUtils.hh.
References hasCharm(), and Particle::pdgId().
00144 { return hasCharm(p.pdgId()); }
bool hasCharm | ( | const int & | pid | ) |
does this particle contain a charm quark?
Definition at line 310 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasCharm().
00311 { 00312 if( extraBits(pid) > 0 ) { return false; } 00313 if( fundamentalID(pid) > 0 ) { return false; } 00314 if( digit(nq3,pid) == 4 || digit(nq2,pid) == 4 || digit(nq1,pid) == 4 ) { return true; } 00315 return false; 00316 }
bool Rivet::PID::hasDown | ( | const Particle & | p | ) | [inline] |
does this particle contain a down quark?
Definition at line 140 of file ParticleIdUtils.hh.
References hasDown(), and Particle::pdgId().
00140 { return hasDown(p.pdgId()); }
bool hasDown | ( | const int & | pid | ) |
does this particle contain a down quark?
Definition at line 294 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasDown().
00295 { 00296 if( extraBits(pid) > 0 ) { return false; } 00297 if( fundamentalID(pid) > 0 ) { return false; } 00298 if( digit(nq3,pid) == 1 || digit(nq2,pid) == 1 || digit(nq1,pid) == 1 ) { return true; } 00299 return false; 00300 }
bool Rivet::PID::hasStrange | ( | const Particle & | p | ) | [inline] |
does this particle contain a strange quark?
Definition at line 142 of file ParticleIdUtils.hh.
References hasStrange(), and Particle::pdgId().
00142 { return hasStrange(p.pdgId()); }
bool hasStrange | ( | const int & | pid | ) |
does this particle contain a strange quark?
Definition at line 302 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasStrange().
00303 { 00304 if( extraBits(pid) > 0 ) { return false; } 00305 if( fundamentalID(pid) > 0 ) { return false; } 00306 if( digit(nq3,pid) == 3 || digit(nq2,pid) == 3 || digit(nq1,pid) == 3 ) { return true; } 00307 return false; 00308 }
bool Rivet::PID::hasTop | ( | const Particle & | p | ) | [inline] |
does this particle contain a top quark?
Definition at line 148 of file ParticleIdUtils.hh.
References hasTop(), and Particle::pdgId().
00148 { return hasTop(p.pdgId()); }
bool hasTop | ( | const int & | pid | ) |
does this particle contain a top quark?
Definition at line 326 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasTop().
00327 { 00328 if( extraBits(pid) > 0 ) { return false; } 00329 if( fundamentalID(pid) > 0 ) { return false; } 00330 if( digit(nq3,pid) == 6 || digit(nq2,pid) == 6 || digit(nq1,pid) == 6 ) { return true; } 00331 return false; 00332 }
bool Rivet::PID::hasUp | ( | const Particle & | p | ) | [inline] |
does this particle contain an up quark?
Definition at line 138 of file ParticleIdUtils.hh.
References hasUp(), and Particle::pdgId().
00138 { return hasUp(p.pdgId()); }
bool hasUp | ( | const int & | pid | ) |
does this particle contain an up quark?
Definition at line 286 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), nq1, nq2, and nq3.
Referenced by hasUp().
00287 { 00288 if( extraBits(pid) > 0 ) { return false; } 00289 if( fundamentalID(pid) > 0 ) { return false; } 00290 if( digit(nq3,pid) == 2 || digit(nq2,pid) == 2 || digit(nq1,pid) == 2 ) { return true; } 00291 return false; 00292 }
bool Rivet::PID::isBaryon | ( | const Particle & | p | ) | [inline] |
is this a valid baryon ID?
Definition at line 121 of file ParticleIdUtils.hh.
References isBaryon(), and Particle::pdgId().
00121 { return isBaryon(p.pdgId()); }
bool isBaryon | ( | const int & | pid | ) |
is this a valid baryon ID?
Definition at line 169 of file ParticleIdUtils.cc.
References abspid(), digit(), extraBits(), fundamentalID(), nj, nq1, nq2, and nq3.
Referenced by isBaryon(), isHadron(), isValid(), and threeCharge().
00170 { 00171 if( extraBits(pid) > 0 ) { return false; } 00172 if( abspid(pid) <= 100 ) { return false; } 00173 if( fundamentalID(pid) <= 100 && fundamentalID(pid) > 0 ) { return false; } 00174 if( abspid(pid) == 2110 || abspid(pid) == 2210 ) { return true; } 00175 if( digit(nj,pid) > 0 && digit(nq3,pid) > 0 00176 && digit(nq2,pid) > 0 && digit(nq1,pid) > 0 ) { return true; } 00177 return false; 00178 }
bool Rivet::PID::isDiQuark | ( | const Particle & | p | ) | [inline] |
is this a valid diquark ID?
Definition at line 123 of file ParticleIdUtils.hh.
References isDiQuark(), and Particle::pdgId().
00123 { return isDiQuark(p.pdgId()); }
bool isDiQuark | ( | const int & | pid | ) |
is this a valid diquark ID?
Definition at line 181 of file ParticleIdUtils.cc.
References abspid(), digit(), extraBits(), fundamentalID(), nj, nq1, nq2, and nq3.
Referenced by isDiQuark(), isValid(), and threeCharge().
00182 { 00183 if( extraBits(pid) > 0 ) { return false; } 00184 if( abspid(pid) <= 100 ) { return false; } 00185 if( fundamentalID(pid) <= 100 && fundamentalID(pid) > 0 ) { return false; } 00186 if( digit(nj,pid) > 0 && digit(nq3,pid) == 0 00187 && digit(nq2,pid) > 0 && digit(nq1,pid) > 0 ) { // diquark signature 00188 // EvtGen uses the diquarks for quark pairs, so, for instance, 00189 // 5501 is a valid "diquark" for EvtGen 00190 //if( digit(nj) == 1 && digit(nq2) == digit(nq1) ) { // illegal 00191 // return false; 00192 //} else { 00193 return true; 00194 //} 00195 } 00196 return false; 00197 }
bool Rivet::PID::isHadron | ( | const Particle & | p | ) | [inline] |
is this a valid hadron ID?
Definition at line 125 of file ParticleIdUtils.hh.
References isHadron(), and Particle::pdgId().
Referenced by Rivet::hadronFilter(), and DISKinematics::project().
00125 { return isHadron(p.pdgId()); }
bool isHadron | ( | const int & | pid | ) |
is this a valid hadron ID?
Definition at line 200 of file ParticleIdUtils.cc.
References extraBits(), isBaryon(), isMeson(), and isPentaquark().
Referenced by isHadron(), and Multiplicity::project().
00201 { 00202 if( extraBits(pid) > 0 ) { return false; } 00203 if( isMeson(pid) ) { return true; } 00204 if( isBaryon(pid) ) { return true; } 00205 if( isPentaquark(pid) ) { return true; } 00206 return false; 00207 }
bool Rivet::PID::isLepton | ( | const Particle & | p | ) | [inline] |
is this a valid lepton ID?
Definition at line 127 of file ParticleIdUtils.hh.
References isLepton(), and Particle::pdgId().
Referenced by DISLepton::project().
00127 { return isLepton(p.pdgId()); }
bool isLepton | ( | const int & | pid | ) |
is this a valid lepton ID?
Definition at line 209 of file ParticleIdUtils.cc.
References extraBits(), and fundamentalID().
Referenced by isLepton(), and ChargedLeptons::project().
00210 { 00211 if( extraBits(pid) > 0 ) { return false; } 00212 if( fundamentalID(pid) >= 11 && fundamentalID(pid) <= 18 ) { return true; } 00213 return false; 00214 }
bool Rivet::PID::isMeson | ( | const Particle & | p | ) | [inline] |
is this a valid meson ID?
Definition at line 119 of file ParticleIdUtils.hh.
References isMeson(), and Particle::pdgId().
00119 { return isMeson(p.pdgId()); }
bool isMeson | ( | const int & | pid | ) |
is this a valid meson ID?
Definition at line 145 of file ParticleIdUtils.cc.
References abspid(), digit(), extraBits(), fundamentalID(), nj, nq1, nq2, and nq3.
Referenced by isHadron(), isMeson(), isValid(), lSpin(), sSpin(), and threeCharge().
00146 { 00147 if( extraBits(pid) > 0 ) { return false; } 00148 if( abspid(pid) <= 100 ) { return false; } 00149 if( fundamentalID(pid) <= 100 && fundamentalID(pid) > 0 ) { return false; } 00150 int aid = abspid(pid); 00151 if( aid == 130 || aid == 310 || aid == 210 ) { return true; } 00152 // EvtGen uses some odd numbers 00153 if( aid == 150 || aid == 350 || aid == 510 || aid == 530 ) { return true; } 00154 // pomeron, etc. 00155 if( pid == 110 || pid == 990 || pid == 9990 ) { return true; } 00156 if( digit(nj,pid) > 0 && digit(nq3,pid) > 0 00157 && digit(nq2,pid) > 0 && digit(nq1,pid) == 0 ) { 00158 // check for illegal antiparticles 00159 if( digit(nq3,pid) == digit(nq2,pid) && pid < 0 ) { 00160 return false; 00161 } else { 00162 return true; 00163 } 00164 } 00165 return false; 00166 }
bool Rivet::PID::isNucleus | ( | const Particle & | p | ) | [inline] |
is this a valid ion ID?
Definition at line 129 of file ParticleIdUtils.hh.
References isNucleus(), and Particle::pdgId().
00129 { return isNucleus(p.pdgId()); }
bool isNucleus | ( | const int & | pid | ) |
is this a valid ion ID?
Definition at line 223 of file ParticleIdUtils.cc.
References abspid(), digit(), n10, and n9.
Referenced by A(), isNucleus(), isValid(), lambda(), and Z().
00224 { 00225 // a proton can also be a Hydrogen nucleus 00226 if( abspid(pid) == 2212 ) { return true; } 00227 // new standard: +/- 10LZZZAAAI 00228 if( ( digit(n10,pid) == 1 ) && ( digit(n9,pid) == 0 ) ) { 00229 // charge should always be less than or equal to baryon number 00230 // the following line is A >= Z 00231 if( (abspid(pid)/10)%1000 >= (abspid(pid)/10000)%1000 ) { return true; } 00232 } 00233 return false; 00234 }
bool Rivet::PID::isPentaquark | ( | const Particle & | p | ) | [inline] |
is this a valid pentaquark ID?
Definition at line 131 of file ParticleIdUtils.hh.
References isPentaquark(), and Particle::pdgId().
00131 { return isPentaquark(p.pdgId()); }
bool isPentaquark | ( | const int & | pid | ) |
is this a valid pentaquark ID?
Definition at line 237 of file ParticleIdUtils.cc.
References digit(), extraBits(), n, nj, nl, nq1, nq2, nq3, and nr.
Referenced by isHadron(), isPentaquark(), and isValid().
00238 { 00239 // a pentaquark is of the form 9abcdej, 00240 // where j is the spin and a, b, c, d, and e are quarks 00241 if( extraBits(pid) > 0 ) { return false; } 00242 if( digit(n,pid) != 9 ) { return false; } 00243 if( digit(nr,pid) == 9 || digit(nr,pid) == 0 ) { return false; } 00244 if( digit(nj,pid) == 9 || digit(nl,pid) == 0 ) { return false; } 00245 if( digit(nq1,pid) == 0 ) { return false; } 00246 if( digit(nq2,pid) == 0 ) { return false; } 00247 if( digit(nq3,pid) == 0 ) { return false; } 00248 if( digit(nj,pid) == 0 ) { return false; } 00249 // check ordering 00250 if( digit(nq2,pid) > digit(nq1,pid) ) { return false; } 00251 if( digit(nq1,pid) > digit(nl,pid) ) { return false; } 00252 if( digit(nl,pid) > digit(nr,pid) ) { return false; } 00253 return true; 00254 }
bool Rivet::PID::isRhadron | ( | const Particle & | p | ) | [inline] |
is this a valid R-hadron ID?
Definition at line 135 of file ParticleIdUtils.hh.
References isRhadron(), and Particle::pdgId().
00135 { return isRhadron(p.pdgId()); }
bool isRhadron | ( | const int & | pid | ) |
is this a valid R-hadron ID?
Definition at line 269 of file ParticleIdUtils.cc.
References digit(), extraBits(), isSUSY(), n, nj, nq2, nq3, and nr.
Referenced by isRhadron(), and isValid().
00270 { 00271 // an R-hadron is of the form 10abcdj, 00272 // where j is the spin and a, b, c, and d are quarks or gluons 00273 if( extraBits(pid) > 0 ) { return false; } 00274 if( digit(n,pid) != 1 ) { return false; } 00275 if( digit(nr,pid) != 0 ) { return false; } 00276 // make sure this isn't a SUSY particle 00277 if( isSUSY(pid) ) { return false; } 00278 // All R-hadrons have at least 3 core digits 00279 if( digit(nq2,pid) == 0 ) { return false; } 00280 if( digit(nq3,pid) == 0 ) { return false; } 00281 if( digit(nj,pid) == 0 ) { return false; } 00282 return true; 00283 }
bool Rivet::PID::isSUSY | ( | const Particle & | p | ) | [inline] |
is this a valid SUSY ID?
Definition at line 133 of file ParticleIdUtils.hh.
References isSUSY(), and Particle::pdgId().
00133 { return isSUSY(p.pdgId()); }
bool isSUSY | ( | const int & | pid | ) |
is this a valid SUSY ID?
Definition at line 257 of file ParticleIdUtils.cc.
References digit(), extraBits(), fundamentalID(), n, and nr.
Referenced by isRhadron(), isSUSY(), and isValid().
00258 { 00259 // fundamental SUSY particles have n = 1 or 2 00260 if( extraBits(pid) > 0 ) { return false; } 00261 if( digit(n,pid) != 1 && digit(n,pid) != 2 ) { return false; } 00262 if( digit(nr,pid) != 0 ) { return false; } 00263 // check fundamental part 00264 if( fundamentalID(pid) == 0 ) { return false; } 00265 return true; 00266 }
bool isValid | ( | const int & | pid | ) |
is this a valid ID?
Definition at line 102 of file ParticleIdUtils.cc.
References extraBits(), fundamentalID(), isBaryon(), isDiQuark(), isMeson(), isNucleus(), isPentaquark(), isRhadron(), and isSUSY().
00103 { 00104 if( extraBits(pid) > 0 ) { 00105 if( isNucleus(pid) ) { return true; } 00106 return false; 00107 } 00108 if( isSUSY(pid) ) { return true; } 00109 if( isRhadron(pid) ) { return true; } 00110 // Meson signature 00111 if( isMeson(pid) ) { return true; } 00112 // Baryon signature 00113 if( isBaryon(pid) ) { return true; } 00114 // DiQuark signature 00115 if( isDiQuark(pid) ) { return true; } 00116 // fundamental particle 00117 if( fundamentalID(pid) > 0 ) { 00118 if(pid > 0 ) { 00119 return true; 00120 } else { 00121 // AB - disabled this to remove need for PID -> name lookup. 00122 //if( hasFundamentalAnti(pid) ) { return true; } 00123 return false; 00124 } 00125 } 00126 // pentaquark 00127 if( isPentaquark(pid) ) { return true; } 00128 // don't recognize this number 00129 return false; 00130 }
int Rivet::PID::jSpin | ( | const Particle & | p | ) | [inline] |
jSpin returns 2J+1, where J is the total spin
Definition at line 151 of file ParticleIdUtils.hh.
References jSpin(), and Particle::pdgId().
00151 { return jSpin(p.pdgId()); }
int jSpin | ( | const int & | pid | ) |
jSpin returns 2J+1, where J is the total spin
Definition at line 337 of file ParticleIdUtils.cc.
References abspid(), extraBits(), and fundamentalID().
Referenced by jSpin().
00338 { 00339 if( fundamentalID(pid) > 0 ) { 00340 // some of these are known 00341 int fund = fundamentalID(pid); 00342 if( fund > 0 && fund < 7 ) return 2; 00343 if( fund == 9 ) return 3; 00344 if( fund > 10 && fund < 17 ) return 2; 00345 if( fund > 20 && fund < 25 ) return 3; 00346 return 0; 00347 } else if( extraBits(pid) > 0 ) { 00348 return 0; 00349 } 00350 return abspid(pid)%10; 00351 }
int Rivet::PID::lambda | ( | const int & | pid | ) |
Definition at line 89 of file ParticleIdUtils.cc.
References abspid(), digit(), isNucleus(), and n8.
00090 { 00091 // a proton can also be a Hydrogen nucleus 00092 if( abspid(pid) == 2212 ) { return 0; } 00093 if( isNucleus(pid) ) return digit(n8,pid); 00094 return 0; 00095 }
void Rivet::PID::listParticleNames | ( | std::ostream & | os | ) |
Definition at line 1679 of file ParticleName.cc.
References Rivet::m, n, and writeParticleNameLine().
01680 { 01681 //writeVersion( os ); 01682 os << " HepPID Particle List" << std::endl; 01683 os << std::endl; 01684 01685 // simple: static PartcleIdMap const & pmap = getPartcleIdMap(); 01686 // simple: for( PartcleIdMap::const_iterator cit = pmap.begin(), mend = pmap.end(); 01687 // simple: cit != mend; 01688 // simple: ++cit ) { 01689 // simple: os << " PDT number: " ; 01690 // simple: os.width(12); 01691 // simple: os << cit->first << " PDT name: " << cit->second << std::endl; 01692 // simple: } 01693 int id, i, j, q1, q2, q3, l, m, n; 01694 // special cases 01695 for( id=1; id<101; ++id) { 01696 writeParticleNameLine( id, os ); 01697 writeParticleNameLine( -id, os ); 01698 } 01699 for( i=11; i<1000; ++i) { 01700 id = i*10; 01701 writeParticleNameLine( id, os ); 01702 writeParticleNameLine( -id, os ); 01703 } 01704 // SUSY 01705 for( n=1; n<3; ++n) { 01706 for( q1=0; q1<10; ++q1) { 01707 for( j=0; j<10; ++j) { 01708 id = 1000000*n+10*q1+j; 01709 writeParticleNameLine( id, os ); 01710 writeParticleNameLine( -id, os ); 01711 } 01712 } 01713 } 01714 // technicolor, etc. 01715 for( n=3; n<6; ++n) { 01716 for( q2=0; q2<10; ++q2) { 01717 for( q1=0; q1<10; ++q1) { 01718 for( j=0; j<10; ++j) { 01719 for( m=0; m<10; ++m) { 01720 for( l=0; l<7; ++l) { 01721 id = 1000000*n+100000*m+10000*l+100*q2+10*q1+j; 01722 writeParticleNameLine( id, os ); 01723 writeParticleNameLine( -id, os ); 01724 } 01725 } 01726 } 01727 } 01728 } 01729 } 01730 // R-hadrons 01731 for( q3=0; q3<10; ++q3) { 01732 for( q2=1; q2<10; ++q2) { 01733 for( q1=1; q1<10; ++q1) { 01734 for( j=1; j<5; ++j) { 01735 id = 1000000+1000*q3+100*q2+10*q1+j; 01736 writeParticleNameLine( id, os ); 01737 if(q3 > 0 ) id = 1000000+90000+1000*q3+100*q2+10*q1+j; 01738 writeParticleNameLine( id, os ); 01739 } 01740 } 01741 } 01742 } 01743 // miscellaneous generator particles 01744 for( l=0; l<9; ++l) { 01745 for( i=1; i<100; ++i) { 01746 id = 9900000+10000*l+i; 01747 writeParticleNameLine( id, os ); 01748 writeParticleNameLine( -id, os ); 01749 } 01750 for( q3=0; q3<10; ++q3) { 01751 for( q2=1; q2<10; ++q2) { 01752 for( q1=1; q1<10; ++q1) { 01753 for( j=0; j<10; ++j) { 01754 id = 9900000+10000*l+1000*q3+100*q2+10*q1+j; 01755 writeParticleNameLine( id, os ); 01756 writeParticleNameLine( -id, os ); 01757 } 01758 } 01759 } 01760 } 01761 } 01762 // diquark 01763 for( i=11; i<100; ++i) { 01764 for( j=0; j<10; ++j) { 01765 id = 100*i+j; 01766 writeParticleNameLine( id, os ); 01767 writeParticleNameLine( -id, os ); 01768 } 01769 } 01770 // mesons 01771 for( q2=1; q2<10; ++q2) { 01772 for( q1=1; q1<10; ++q1) { 01773 for( j=1; j<10; ++j) { 01774 for( m=0; m<9; ++m) { 01775 for( l=0; l<10; ++l) { 01776 id = 100000*m+10000*l+100*q2+10*q1+j; 01777 writeParticleNameLine( id, os ); 01778 writeParticleNameLine( -id, os ); 01779 id = 9000000+100000*m+10000*l+100*q2+10*q1+j; 01780 writeParticleNameLine( id, os ); 01781 writeParticleNameLine( -id, os ); 01782 } 01783 } 01784 } 01785 } 01786 } 01787 // baryons 01788 for( q3=1; q3<10; ++q3) { 01789 for( q2=1; q2<10; ++q2) { 01790 for( q1=1; q1<10; ++q1) { 01791 for( j=1; j<10; ++j) { 01792 for( m=0; m<9; ++m) { 01793 id = 10000*m+1000*q3+100*q2+10*q1+j; 01794 writeParticleNameLine( id, os ); 01795 writeParticleNameLine( -id, os ); 01796 } 01797 } 01798 } 01799 } 01800 } 01801 // pentaquarks 01802 for( l=1; l<9; ++l ) { 01803 for ( m=1; m<9; ++m ) { 01804 for( q3=1; q3<9; ++q3) { 01805 for( q2=1; q2<9; ++q2) { 01806 for( q1=1; q1<9; ++q1) { 01807 id = 9*1000000+l*100000+m*10000+1000*q3+100*q2+10*q1+2; 01808 writeParticleNameLine( id, os ); 01809 writeParticleNameLine( -id, os ); 01810 } 01811 } 01812 } 01813 } 01814 } 01815 // ions 01816 for( i=1; i<3; ++i) { 01817 for( m=1; m<5; ++m) { 01818 id = 1000000000+10*m+10000*i; 01819 writeParticleNameLine( id, os ); 01820 writeParticleNameLine( -id, os ); 01821 } 01822 } 01823 return; 01824 } // listParticleNames()
int Rivet::PID::lSpin | ( | const Particle & | p | ) | [inline] |
lSpin returns 2L+1, where L is the orbital angular momentum
Definition at line 155 of file ParticleIdUtils.hh.
References lSpin(), and Particle::pdgId().
00155 { return lSpin(p.pdgId()); }
int lSpin | ( | const int & | pid | ) |
lSpin returns 2L+1, where L is the orbital angular momentum
Definition at line 378 of file ParticleIdUtils.cc.
References digit(), isMeson(), n, nj, and nl.
Referenced by lSpin().
00379 { 00380 if( !isMeson(pid) ) { return 0; } 00381 int inl = digit(nl,pid); 00382 //int tent = digit(n,pid); 00383 int js = digit(nj,pid); 00384 if( digit(n,pid) == 9 ) { return 0; } // tentative ID 00385 if( inl == 0 && js == 3 ) { 00386 return 0; 00387 } else if( inl == 0 && js == 5 ) { 00388 return 1; 00389 } else if( inl == 0 && js == 7 ) { 00390 return 2; 00391 } else if( inl == 0 && js == 9 ) { 00392 return 3; 00393 } else if( inl == 0 && js == 1 ) { 00394 return 0; 00395 } else if( inl == 1 && js == 3 ) { 00396 return 1; 00397 } else if( inl == 1 && js == 5 ) { 00398 return 2; 00399 } else if( inl == 1 && js == 7 ) { 00400 return 3; 00401 } else if( inl == 1 && js == 9 ) { 00402 return 4; 00403 } else if( inl == 2 && js == 3 ) { 00404 return 1; 00405 } else if( inl == 2 && js == 5 ) { 00406 return 2; 00407 } else if( inl == 2 && js == 7 ) { 00408 return 3; 00409 } else if( inl == 2 && js == 9 ) { 00410 return 4; 00411 } else if( inl == 1 && js == 1 ) { 00412 return 1; 00413 } else if( inl == 3 && js == 3 ) { 00414 return 2; 00415 } else if( inl == 3 && js == 5 ) { 00416 return 3; 00417 } else if( inl == 3 && js == 7 ) { 00418 return 4; 00419 } else if( inl == 3 && js == 9 ) { 00420 return 5; 00421 } 00422 // default to zero 00423 return 0; 00424 }
int Rivet::PID::particleName | ( | const std::string & | s | ) |
Definition at line 1667 of file ParticleName.cc.
References ParticleNameMap::endLookupMap(), ParticleNameMap::findString(), and getParticleNameMap().
01668 { 01669 static ParticleNameMap const & pmap = getParticleNameMap(); 01670 ParticleNameMap::nameIterator const cit = pmap.findString( s ); 01671 return ( cit == pmap.endLookupMap() ) 01672 ? 0 01673 : cit->second; 01674 } // particleName()
std::string Rivet::PID::particleName | ( | const int & | pid | ) |
Definition at line 1657 of file ParticleName.cc.
References ParticleNameMap::end(), ParticleNameMap::find(), and getParticleNameMap().
Referenced by writeParticleNameLine().
01658 { 01659 static ParticleNameMap const & pmap = getParticleNameMap(); 01660 01661 ParticleNameMap::idIterator const cit = pmap.find( pid ); 01662 return ( cit == pmap.end() ) 01663 ? std::string("not defined") 01664 : cit->second; 01665 } // particleName()
ParticleNameMap const& Rivet::PID::@247::ParticleNameInit | ( | ) | [static] |
Definition at line 76 of file ParticleName.cc.
References Rivet::m.
Referenced by getParticleNameMap().
00077 { 00078 00079 ParticleIdMap m; 00080 ParticleLookupMap nameMap; 00081 00082 static const struct { 00083 int pid; 00084 const char* pname; 00085 } SNames[] = { 00086 { 0, "" }, 00087 { 1, "d" }, 00088 { -1, "d~" }, 00089 { 2, "u" }, 00090 { -2, "u~" }, 00091 { 3, "s" }, 00092 { -3, "s~" }, 00093 { 4, "c" }, 00094 { -4, "c~" }, 00095 { 5, "b" }, 00096 { -5, "b~" }, 00097 { 6, "t" }, 00098 { -6, "t~" }, 00099 { 7, "b'" }, 00100 { -7, "b'~" }, 00101 { 8, "t'" }, 00102 { -8, "t'~" }, 00103 { 11, "e^-" }, 00104 { -11, "e^+" }, 00105 { 12, "nu_e" }, 00106 { -12, "nu_e~" }, 00107 { 13, "mu^-" }, 00108 { -13, "mu^+" }, 00109 { 14, "nu_mu" }, 00110 { -14, "nu_mu~" }, 00111 { 15, "tau^-" }, 00112 { -15, "tau^+" }, 00113 { 16, "nu_tau" }, 00114 { -16, "nu_tau~" }, 00115 { 17, "tau'^-" }, 00116 { -17, "tau'^+" }, 00117 { 18, "nu_tau'" }, 00118 { -18, "nu_tau'~" }, 00119 { 21, "g" }, 00120 { 22, "gamma" }, 00121 { 10022, "virtual-photon" }, 00122 { 20022, "Cerenkov-radiation" }, 00123 { 23, "Z^0" }, 00124 { 24, "W^+" }, 00125 { -24, "W^-" }, 00126 { 25, "H_1^0" }, 00127 { 32, "Z_2^0" }, 00128 { 33, "Z_3^0" }, 00129 { 34, "W_2^+" }, 00130 { -34, "W_2^-" }, 00131 { 35, "H_2^0" }, 00132 { 36, "H_3^0" }, 00133 { 37, "H^+" }, 00134 { -37, "H^-" }, 00135 { 39, "G" }, 00136 { 41, "R^0" }, 00137 { -41, "R~^0" }, 00138 { 42, "LQ_c" }, 00139 { -42, "LQ_c~" }, 00140 { 51, "H_L^0" }, 00141 { 52, "H_1^++" }, 00142 { -52, "H_1^--" }, 00143 { 53, "H_2^+" }, 00144 { -53, "H_2^-" }, 00145 { 54, "H_2^++" }, 00146 { -54, "H_2^--" }, 00147 { 55, "H_4^0" }, 00148 { -55, "H_4~^0" }, 00149 { 81, "generator-specific+81" }, 00150 { 82, "generator-specific+82" }, 00151 { 83, "generator-specific+83" }, 00152 { 84, "generator-specific+84" }, 00153 { 85, "generator-specific+85" }, 00154 { 86, "generator-specific+86" }, 00155 { 87, "generator-specific+87" }, 00156 { 88, "generator-specific+88" }, 00157 { 89, "generator-specific+89" }, 00158 { 90, "generator-specific+90" }, 00159 { 91, "generator-specific+91" }, 00160 { 92, "generator-specific+92" }, 00161 { 93, "generator-specific+93" }, 00162 { 94, "generator-specific+94" }, 00163 { 95, "generator-specific+95" }, 00164 { 96, "generator-specific+96" }, 00165 { 97, "generator-specific+97" }, 00166 { 98, "generator-specific+98" }, 00167 { 99, "generator-specific+99" }, 00168 { -81, "generator-specific-81" }, 00169 { -82, "generator-specific-82" }, 00170 { -83, "generator-specific-83" }, 00171 { -84, "generator-specific-84" }, 00172 { -85, "generator-specific-85" }, 00173 { -86, "generator-specific-86" }, 00174 { -87, "generator-specific-87" }, 00175 { -88, "generator-specific-88" }, 00176 { -89, "generator-specific-89" }, 00177 { -90, "generator-specific-90" }, 00178 { -91, "generator-specific-91" }, 00179 { -92, "generator-specific-92" }, 00180 { -93, "generator-specific-93" }, 00181 { -94, "generator-specific-94" }, 00182 { -95, "generator-specific-95" }, 00183 { -96, "generator-specific-96" }, 00184 { -97, "generator-specific-97" }, 00185 { -98, "generator-specific-98" }, 00186 { -99, "generator-specific-99" }, 00187 { 100, "generator-specific+100" }, 00188 { -100, "generator-specific-100" }, 00189 { 101, "geantino" }, 00190 { 102, "charged-geantino" }, 00191 { 110, "reggeon" }, 00192 { 130, "K_L^0" }, 00193 { 310, "K_S^0" }, 00194 { 990, "pomeron" }, 00195 { 9990, "odderon" }, 00196 { 1000001, "susy-d_L" }, 00197 { -1000001, "susy-d_L~" }, 00198 { 1000002, "susy-u_L" }, 00199 { -1000002, "susy-u_L~" }, 00200 { 1000003, "susy-s_L" }, 00201 { -1000003, "susy-s_L~" }, 00202 { 1000004, "susy-c_L" }, 00203 { -1000004, "susy-c_L~" }, 00204 { 1000005, "susy-b_1" }, 00205 { -1000005, "susy-b_1~" }, 00206 { 1000006, "susy-t_1" }, 00207 { -1000006, "susy-t_1~" }, 00208 { 1000011, "susy-e_L^-" }, 00209 { -1000011, "susy-e_L^+" }, 00210 { 1000012, "susy-nu_eL" }, 00211 { -1000012, "susy-nu_eL~" }, 00212 { 1000013, "susy-mu_L^-" }, 00213 { -1000013, "susy-mu_L^+" }, 00214 { 1000014, "susy-nu_muL" }, 00215 { -1000014, "susy-nu_muL~" }, 00216 { 1000015, "susy-tau_L^-" }, 00217 { -1000015, "susy-tau_L^+" }, 00218 { 1000016, "susy-nu_tauL" }, 00219 { -1000016, "susy-nu_tauL~" }, 00220 { 1000021, "gluino" }, 00221 { 1000022, "susy-chi_1^0" }, 00222 { 1000023, "susy-chi_2^0" }, 00223 { 1000024, "susy-chi_1^+" }, 00224 { -1000024, "susy-chi_1^-" }, 00225 { 1000025, "susy-chi_3^0" }, 00226 { 1000035, "susy-chi_4^0" }, 00227 { 1000037, "susy-chi_2^+" }, 00228 { -1000037, "susy-chi_2^-" }, 00229 { 1000039, "gravitino" }, 00230 { 2000001, "susy-d_R" }, 00231 { -2000001, "susy-d_R~" }, 00232 { 2000002, "susy-u_R" }, 00233 { -2000002, "susy-u_R~" }, 00234 { 2000003, "susy-s_R" }, 00235 { -2000003, "susy-s_R~" }, 00236 { 2000004, "susy-c_R" }, 00237 { -2000004, "susy-c_R~" }, 00238 { 2000005, "susy-b_R" }, 00239 { -2000005, "susy-b_R~" }, 00240 { 2000006, "susy-t_R" }, 00241 { -2000006, "susy-t_R~" }, 00242 { 2000011, "susy-e_R^-" }, 00243 { -2000011, "susy-e_R^+" }, 00244 { 2000012, "susy-nu_eR" }, 00245 { -2000012, "susy-nu_eR~" }, 00246 { 2000013, "susy-mu_R^-" }, 00247 { -2000013, "susy-mu_R^+" }, 00248 { 2000014, "susy-nu_muR" }, 00249 { -2000014, "susy-nu_muR~" }, 00250 { 2000015, "susy-tau_R^-" }, 00251 { -2000015, "susy-tau_R^+" }, 00252 { 2000016, "susy-nu_tauR" }, 00253 { -2000016, "susy-nu_tauR~" }, 00254 { 3100021, "V8_tech" }, 00255 { -3100021, "V8_tech" }, 00256 { 3000111, "pi_tech^0" }, 00257 { 3060111, "pi_tech_22_1" }, 00258 { 3160111, "pi_tech_22_8" }, 00259 { 3000113, "rho_tech^0" }, 00260 { 3130113, "rho_tech_11" }, 00261 { 3140113, "rho_tech_12" }, 00262 { 3150113, "rho_tech_21" }, 00263 { 3160113, "rho_tech_22" }, 00264 { 3000211, "pi_tech^+" }, 00265 { -3000211, "pi_tech^-" }, 00266 { 3000213, "rho_tech^+" }, 00267 { -3000213, "rho_tech^-" }, 00268 { 3000221, "pi'_tech" }, 00269 { 3100221, "eta_tech" }, 00270 { 3000223, "omega_tech" }, 00271 { 4000001, "d*" }, 00272 { -4000001, "d*~" }, 00273 { 4000002, "u*" }, 00274 { -4000002, "u*~" }, 00275 { 4000011, "e*^-" }, 00276 { -4000011, "e*^+" }, 00277 { 4000012, "nu*_e" }, 00278 { -4000012, "nu*_e~" }, 00279 { 4000039, "G*" }, 00280 { -4000039, "G*~" }, 00281 { 9900012, "nu_Re" }, 00282 { -9900012, "nu_Re~" }, 00283 { 9900014, "nu_Rmu" }, 00284 { -9900014, "nu_Rmu~" }, 00285 { 9900016, "nu_Rtau" }, 00286 { -9900016, "nu_Rtau~" }, 00287 { 9900023, "Z_R^0" }, 00288 { -9900023, "Z_R~^0" }, 00289 { 9900024, "W_R^+" }, 00290 { -9900024, "W_R^-" }, 00291 { 9900041, "H_L^++" }, 00292 { -9900041, "H_L^--" }, 00293 { 9900042, "H_R^++" }, 00294 { -9900042, "H_R^--" }, 00295 { 9910113, "rho_diffr^0" }, 00296 { 9910211, "pi_diffr^+" }, 00297 { -9910211, "pi_diffr^-" }, 00298 { 9910223, "omega_diffr" }, 00299 { 9910333, "phi_diffr" }, 00300 { 9910443, "psi_diffr" }, 00301 { 9912112, "n_diffr^0" }, 00302 { -9912112, "n_diffr~^0" }, 00303 { 9912212, "p_diffr^+" }, 00304 { -9912212, "p_diffr~^-" }, 00305 { 9920022, "remnant photon" }, 00306 { 9922212, "remnant nucleon" }, 00307 { -9922212, "remnant nucleon~" }, 00308 { 9900441, "cc~[1S08]" }, 00309 { 9910441, "cc~[3P08]" }, 00310 { 9900443, "cc~[3S18]" }, 00311 { 9900551, "bb~[1S08]" }, 00312 { 9910551, "bb~[3P08]" }, 00313 { 9900553, "bb~[3S18]" }, 00314 { 1103, "dd_1" }, 00315 { -1103, "dd_1~" }, 00316 { 2101, "ud_0" }, 00317 { -2101, "ud_0~" }, 00318 { 2103, "ud_1" }, 00319 { -2103, "ud_1~" }, 00320 { 2203, "uu_1" }, 00321 { -2203, "uu_1~" }, 00322 { 3101, "sd_0" }, 00323 { -3101, "sd_0~" }, 00324 { 3103, "sd_1" }, 00325 { -3103, "sd_1~" }, 00326 { 3201, "su_0" }, 00327 { -3201, "su_0~" }, 00328 { 3203, "su_1" }, 00329 { -3203, "su_1~" }, 00330 { 3303, "ss_1" }, 00331 { -3303, "ss_1~" }, 00332 { 4101, "cd_0" }, 00333 { -4101, "cd_0~" }, 00334 { 4103, "cd_1" }, 00335 { -4103, "cd_1~" }, 00336 { 4201, "cu_0" }, 00337 { -4201, "cu_0~" }, 00338 { 4203, "cu_1" }, 00339 { -4203, "cu_1~" }, 00340 { 4301, "cs_0" }, 00341 { -4301, "cs_0~" }, 00342 { 4303, "cs_1" }, 00343 { -4303, "cs_1~" }, 00344 { 4403, "cc_1" }, 00345 { -4403, "cc_1~" }, 00346 { 5101, "bd_0" }, 00347 { -5101, "bd_0~" }, 00348 { 5103, "bd_1" }, 00349 { -5103, "bd_1~" }, 00350 { 5201, "bu_0" }, 00351 { -5201, "bu_0~" }, 00352 { 5203, "bu_1" }, 00353 { -5203, "bu_1~" }, 00354 { 5301, "bs_0" }, 00355 { -5301, "bs_0~" }, 00356 { 5303, "bs_1" }, 00357 { -5303, "bs_1~" }, 00358 { 5401, "bc_0" }, 00359 { -5401, "bc_0~" }, 00360 { 5403, "bc_1" }, 00361 { -5403, "bc_1~" }, 00362 { 5503, "bb_1" }, 00363 { -5503, "bb_1~" }, 00364 { 6101, "td_0" }, 00365 { -6101, "td_0~" }, 00366 { 6103, "td_1" }, 00367 { -6103, "td_1~" }, 00368 { 6201, "tu_0" }, 00369 { -6201, "tu_0~" }, 00370 { 6203, "tu_1" }, 00371 { -6203, "tu_1~" }, 00372 { 6301, "ts_0" }, 00373 { -6301, "ts_0~" }, 00374 { 6303, "ts_1" }, 00375 { -6303, "ts_1~" }, 00376 { 6401, "tc_0" }, 00377 { -6401, "tc_0~" }, 00378 { 6403, "tc_1" }, 00379 { -6403, "tc_1~" }, 00380 { 6501, "tb_0" }, 00381 { -6501, "tb_0~" }, 00382 { 6503, "tb_1" }, 00383 { -6503, "tb_1~" }, 00384 { 6603, "tt_1" }, 00385 { -6603, "tt_1~" }, 00386 { 7101, "b'd_0" }, 00387 { -7101, "b'd_0~" }, 00388 { 7103, "b'd_1" }, 00389 { -7103, "b'd_1~" }, 00390 { 7201, "b'u_0" }, 00391 { -7201, "b'u_0~" }, 00392 { 7203, "b'u_1" }, 00393 { -7203, "b'u_1~" }, 00394 { 7301, "b's_0" }, 00395 { -7301, "b's_0~" }, 00396 { 7303, "b's_1" }, 00397 { -7303, "b's_1~" }, 00398 { 7401, "b'c_0" }, 00399 { -7401, "b'c_0~" }, 00400 { 7403, "b'c_1" }, 00401 { -7403, "b'c_1~" }, 00402 { 7501, "b'b_0" }, 00403 { -7501, "b'b_0~" }, 00404 { 7503, "b'b_1" }, 00405 { -7503, "b'b_1~" }, 00406 { 7601, "b't_0" }, 00407 { -7601, "b't_0~" }, 00408 { 7603, "b't_1" }, 00409 { -7603, "b't_1~" }, 00410 { 7703, "b'b'_1" }, 00411 { -7703, "b'b'_1~" }, 00412 { 8101, "t'd_0" }, 00413 { -8101, "t'd_0~" }, 00414 { 8103, "t'd_1" }, 00415 { -8103, "t'd_1~" }, 00416 { 8201, "t'u_0" }, 00417 { -8201, "t'u_0~" }, 00418 { 8203, "t'u_1" }, 00419 { -8203, "t'u_1~" }, 00420 { 8301, "t's_0" }, 00421 { -8301, "t's_0~" }, 00422 { 8303, "t's_1" }, 00423 { -8303, "t's_1~" }, 00424 { 8401, "t'c_0" }, 00425 { -8401, "t'c_0~" }, 00426 { 8403, "t'c_1" }, 00427 { -8403, "t'c_1~" }, 00428 { 8501, "t'b_0" }, 00429 { -8501, "t'b_0~" }, 00430 { 8503, "t'b_1" }, 00431 { -8503, "t'b_1~" }, 00432 { 8601, "t't_0" }, 00433 { -8601, "t't_0~" }, 00434 { 8603, "t't_1" }, 00435 { -8603, "t't_1~" }, 00436 { 8701, "t'b'_0" }, 00437 { -8701, "t'b'_0~" }, 00438 { 8703, "t'b'_1" }, 00439 { -8703, "t'b'_1~" }, 00440 { 8803, "t't'_1" }, 00441 { -8803, "t't'_1~" }, 00442 { 111, "pi^0" }, 00443 { 9000111, "a_0(980)^0" }, 00444 { 10111, "a_0(1450)^0" }, 00445 { 100111, "pi(1300)^0" }, 00446 { 9010111, "pi(1800)^0" }, 00447 { 113, "rho(770)^0" }, 00448 { 10113, "b_1(1235)^0" }, 00449 { 20113, "a_1(1260)^0" }, 00450 { 9000113, "pi_1(1400)^0" }, 00451 { 100113, "rho(1450)^0" }, 00452 { 9010113, "pi_1(1600)^0" }, 00453 { 9020113, "a_1(1640)^0" }, 00454 { 30113, "rho(1700)^0" }, 00455 { 9030113, "rho(1900)^0" }, 00456 { 9040113, "rho(2150)^0" }, 00457 { 115, "a_2(1320)^0" }, 00458 { 10115, "pi_2(1670)^0" }, 00459 { 9000115, "a_2(1700)^0" }, 00460 { 9010115, "pi_2(2100)^0" }, 00461 { 117, "rho_3(1690)^0" }, 00462 { 9000117, "rho_3(1990)^0" }, 00463 { 9010117, "rho_3(2250)^0" }, 00464 { 119, "a_4(2040)^0" }, 00465 { 211, "pi^+" }, 00466 { -211, "pi^-" }, 00467 { 9000211, "a_0(980)^+" }, 00468 { -9000211, "a_0(980)^-" }, 00469 { 10211, "a_0(1450)^+" }, 00470 { -10211, "a_0(1450)^-" }, 00471 { 100211, "pi(1300)^+" }, 00472 { -100211, "pi(1300)^-" }, 00473 { 9010211, "pi(1800)^+" }, 00474 { -9010211, "pi(1800)^-" }, 00475 { 213, "rho(770)^+" }, 00476 { -213, "rho(770)^-" }, 00477 { 10213, "b_1(1235)^+" }, 00478 { -10213, "b_1(1235)^-" }, 00479 { 20213, "a_1(1260)^+" }, 00480 { -20213, "a_1(1260)^-" }, 00481 { 9000213, "pi_1(1400)^+" }, 00482 { -9000213, "pi_1(1400)^-" }, 00483 { 100213, "rho(1450)^+" }, 00484 { -100213, "rho(1450)^-" }, 00485 { 9010213, "pi_1(1600)^+" }, 00486 { -9010213, "pi_1(1600)^-" }, 00487 { 9020213, "a_1(1640)^+" }, 00488 { -9020213, "a_1(1640)^-" }, 00489 { 30213, "rho(1700)^+" }, 00490 { -30213, "rho(1700)^-" }, 00491 { 9030213, "rho(1900)^+" }, 00492 { -9030213, "rho(1900)^-" }, 00493 { 9040213, "rho(2150)^+" }, 00494 { -9040213, "rho(2150)^-" }, 00495 { 215, "a_2(1320)^+" }, 00496 { -215, "a_2(1320)^-" }, 00497 { 10215, "pi_2(1670)^+" }, 00498 { -10215, "pi_2(1670)^-" }, 00499 { 9000215, "a_2(1700)^+" }, 00500 { -9000215, "a_2(1700)^-" }, 00501 { 9010215, "pi_2(2100)^+" }, 00502 { -9010215, "pi_2(2100)^-" }, 00503 { 217, "rho_3(1690)^+" }, 00504 { -217, "rho_3(1690)^-" }, 00505 { 9000217, "rho_3(1990)^+" }, 00506 { -9000217, "rho_3(1990)^-" }, 00507 { 9010217, "rho_3(2250)^+" }, 00508 { -9010217, "rho_3(2250)^-" }, 00509 { 219, "a_4(2040)^+" }, 00510 { -219, "a_4(2040)^-" }, 00511 { 221, "eta" }, 00512 { 9000221, "f_0(600)" }, 00513 { 10221, "f_0(1370)" }, 00514 { 9010221, "f_0(980)" }, 00515 { 9020221, "eta(1405)" }, 00516 { 9030221, "f_0(1500)" }, 00517 { 9040221, "eta(1760)" }, 00518 { 9050221, "f_0(2020)" }, 00519 { 9060221, "f_0(2100)" }, 00520 { 9070221, "f_0(2200)" }, 00521 { 9080221, "eta(2225)" }, 00522 { 100221, "eta(1295)" }, 00523 { 331, "eta'(958)" }, 00524 { 10331, "f_0(1710)" }, 00525 { 100331, "eta(1475)" }, 00526 { 223, "omega(782)" }, 00527 { 9000223, "f_1(1510)" }, 00528 { 9010223, "h_1(1595)" }, 00529 { 10223, "h_1(1170)" }, 00530 { 20223, "f_1(1285)" }, 00531 { 30223, "omega(1650)" }, 00532 { 100223, "omega(1420)" }, 00533 { 333, "phi(1020)" }, 00534 { 10333, "h_1(1380)" }, 00535 { 20333, "f_1(1420)" }, 00536 { 100333, "phi(1680)" }, 00537 { 225, "f_2(1270)" }, 00538 { 9000225, "f_2(1430)" }, 00539 { 10225, "eta_2(1645)" }, 00540 { 9010225, "f_2(1565)" }, 00541 { 9020225, "f_2(1640)" }, 00542 { 9030225, "f_2(1810)" }, 00543 { 9040225, "f_2(1910)" }, 00544 { 9050225, "f_2(1950)" }, 00545 { 9060225, "f_2(2010)" }, 00546 { 9070225, "f_2(2150)" }, 00547 { 9080225, "f_2(2300)" }, 00548 { 9090225, "f_2(2340)" }, 00549 { 335, "f'_2(1525)" }, 00550 { 10335, "eta_2(1870)" }, 00551 { 227, "omega_3(1670)" }, 00552 { 337, "phi_3(1850)" }, 00553 { 229, "f_4(2050)" }, 00554 { 9000229, "f_J(2220)" }, 00555 { 9010229, "f_4(2300)" }, 00556 { 311, "K^0" }, 00557 { -311, "K~^0" }, 00558 { 9000311, "K*_0(800)^0" }, 00559 { -9000311, "K*_0(800)~^0" }, 00560 { 10311, "K*_0(1430)^0" }, 00561 { -10311, "K*_0(1430)~^0" }, 00562 { 100311, "K(1460)^0" }, 00563 { -100311, "K(1460)~^0" }, 00564 { 9010311, "K(1830)^0" }, 00565 { -9010311, "K(1830)~^0" }, 00566 { 9020311, "K*_0(1950)^0" }, 00567 { -9020311, "K*_0(1950)~^0" }, 00568 { 321, "K^+" }, 00569 { -321, "K^-" }, 00570 { 9000321, "K*_0(800)^+" }, 00571 { -9000321, "K*_0(800)^-" }, 00572 { 10321, "K*_0(1430)^+" }, 00573 { -10321, "K*_0(1430)^-" }, 00574 { 100321, "K(1460)^+" }, 00575 { -100321, "K(1460)^-" }, 00576 { 9010321, "K(1830)^+" }, 00577 { -9010321, "K(1830)^-" }, 00578 { 9020321, "K*_0(1950)^+" }, 00579 { -9020321, "K*_0(1950)^-" }, 00580 { 313, "K*(892)^0" }, 00581 { -313, "K*(892)~^0" }, 00582 { 10313, "K_1(1270)^0" }, 00583 { -10313, "K_1(1270)~^0" }, 00584 { 20313, "K_1(1400)^0" }, 00585 { -20313, "K_1(1400)~^0" }, 00586 { 30313, "K*(1680)^0" }, 00587 { -30313, "K*(1680)~^0" }, 00588 { 100313, "K*(1410)^0" }, 00589 { -100313, "K*(1410)~^0" }, 00590 { 9000313, "K_1(1650)^0" }, 00591 { -9000313, "K_1(1650)~^0" }, 00592 { 323, "K*(892)^+" }, 00593 { -323, "K*(892)^-" }, 00594 { 10323, "K_1(1270)^+" }, 00595 { -10323, "K_1(1270)^-" }, 00596 { 20323, "K_1(1400)^+" }, 00597 { -20323, "K_1(1400)^-" }, 00598 { 30323, "K*(1680)^+" }, 00599 { -30323, "K*(1680)^-" }, 00600 { 100323, "K*(1410)^+" }, 00601 { -100323, "K*(1410)^-" }, 00602 { 9000323, "K_1(1650)^+" }, 00603 { -9000323, "K_1(1650)^-" }, 00604 { 315, "K*_2(1430)^0" }, 00605 { -315, "K*_2(1430)~^0" }, 00606 { 9000315, "K_2(1580)^0" }, 00607 { -9000315, "K_2(1580)~^0" }, 00608 { 10315, "K_2(1770)^0" }, 00609 { -10315, "K_2(1770)~^0" }, 00610 { 9010315, "K*_2(1980)^0" }, 00611 { -9010315, "K*_2(1980)~^0" }, 00612 { 9020315, "K_2(2250)^0" }, 00613 { -9020315, "K_2(2250)~^0" }, 00614 { 20315, "K_2(1820)^0" }, 00615 { -20315, "K_2(1820)~^0" }, 00616 { 325, "K*_2(1430)^+" }, 00617 { -325, "K*_2(1430)^-" }, 00618 { 9000325, "K_2(1580)^+" }, 00619 { -9000325, "K_2(1580)^-" }, 00620 { 10325, "K_2(1770)^+" }, 00621 { -10325, "K_2(1770)^-" }, 00622 { 9010325, "K*_2(1980)^+" }, 00623 { -9010325, "K*_2(1980)^-" }, 00624 { 9020325, "K_2(2250)^+" }, 00625 { -9020325, "K_2(2250)^-" }, 00626 { 20325, "K_2(1820)^+" }, 00627 { -20325, "K_2(1820)^-" }, 00628 { 100325, "K_2(1980)^+" }, 00629 { -100325, "K_2(1980)^-" }, 00630 { 317, "K*_3(1780)^0" }, 00631 { -317, "K*_3(1780)~^0" }, 00632 { 9010317, "K_3(2320)^0" }, 00633 { -9010317, "K_3(2320)~^0" }, 00634 { 327, "K*_3(1780)^+" }, 00635 { -327, "K*_3(1780)^-" }, 00636 { 9010327, "K_3(2320)^+" }, 00637 { -9010327, "K_3(2320)^-" }, 00638 { 319, "K*_4(2045)^0" }, 00639 { -319, "K*_4(2045)~^0" }, 00640 { 9000319, "K_4(2500)^0" }, 00641 { -9000319, "K_4(2500)~^0" }, 00642 { 329, "K*_4(2045)^+" }, 00643 { -329, "K*_4(2045)^-" }, 00644 { 9000329, "K_4(2500)^+" }, 00645 { -9000329, "K_4(2500)^-" }, 00646 { 411, "D^+" }, 00647 { -411, "D^-" }, 00648 { 10411, "D*_0(2400)^+" }, 00649 { -10411, "D*_0(2400)^-" }, 00650 { 100411, "D(2S)^+" }, 00651 { -100411, "D(2S)^-" }, 00652 { 413, "D*(2010)^+" }, 00653 { -413, "D*(2010)^-" }, 00654 { 10413, "D_1(2420)^+" }, 00655 { -10413, "D_1(2420)^-" }, 00656 { 20413, "D_1(H)^+" }, 00657 { -20413, "D_1(H)^-" }, 00658 { 100413, "D*(2S)^+" }, 00659 { -100413, "D*(2S)^+" }, 00660 { 415, "D*_2(2460)^+" }, 00661 { -415, "D*_2(2460)^-" }, 00662 { 421, "D^0" }, 00663 { -421, "D~^0" }, 00664 { 10421, "D*_0(2400)^0" }, 00665 { -10421, "D*_0(2400)~^0" }, 00666 { 100421, "D(2S)^0" }, 00667 { -100421, "D(2S)~^0" }, 00668 { 423, "D*(2007)^0" }, 00669 { -423, "D*(2007)~^0" }, 00670 { 10423, "D_1(2420)^0" }, 00671 { -10423, "D_1(2420)~^0" }, 00672 { 20423, "D_1(2430)^0" }, 00673 { -20423, "D_1(2430)~^0" }, 00674 { 100423, "D*(2S)^0" }, 00675 { -100423, "D*(2S)~^0" }, 00676 { 425, "D*_2(2460)^0" }, 00677 { -425, "D*_2(2460)~^0" }, 00678 { 431, "D_s^+" }, 00679 { -431, "D_s^-" }, 00680 { 10431, "D*_s0(2317)^+" }, 00681 { -10431, "D*_s0(2317)^-" }, 00682 { 433, "D*_s^+" }, 00683 { -433, "D*_s^-" }, 00684 { 10433, "D_s1(2536)^+" }, 00685 { -10433, "D_s1(2536)^-" }, 00686 { 20433, "D_s1(2460)^+" }, 00687 { -20433, "D_s1(2460)^-" }, 00688 { 435, "D*_s2(2573)^+" }, 00689 { -435, "D*_s2(2573)^-" }, 00690 { 441, "eta_c(1S)" }, 00691 { 10441, "chi_c0(1P)" }, 00692 { 100441, "eta_c(2S)" }, 00693 { 443, "J/psi(1S)" }, 00694 { 9000443, "psi(4040)" }, 00695 { 10443, "hc(1P)" }, 00696 { 9010443, "psi(4160)" }, 00697 { 20443, "chi_c1(1P)" }, 00698 { 9020443, "psi(4415)" }, 00699 { 30443, "psi(3770)" }, 00700 { 100443, "psi(2S)" }, 00701 { 445, "chi_c2(1P)" }, 00702 { 100445, "chi_c2(2P)" }, 00703 { 511, "B^0" }, 00704 { -511, "B~^0" }, 00705 { 10511, "B*_0^0" }, 00706 { -10511, "B*_0~^0" }, 00707 { 513, "B*^0" }, 00708 { -513, "B*~^0" }, 00709 { 10513, "B_1(L)^0" }, 00710 { -10513, "B_1(L)~^0" }, 00711 { 20513, "B_1(H)^0" }, 00712 { -20513, "B_1(H)~^0" }, 00713 { 515, "B*_2^0" }, 00714 { -515, "B*_2~^0" }, 00715 { 521, "B^+" }, 00716 { -521, "B^-" }, 00717 { 10521, "B*_0^+" }, 00718 { -10521, "B*_0^-" }, 00719 { 523, "B*^+" }, 00720 { -523, "B*^-" }, 00721 { 10523, "B_1(L)^+" }, 00722 { -10523, "B_1(L)^-" }, 00723 { 20523, "B_1(H)^+" }, 00724 { -20523, "B_1(H)^-" }, 00725 { 525, "B*_2^+" }, 00726 { -525, "B*_2^-" }, 00727 { 531, "B_s^0" }, 00728 { -531, "B_s~^0" }, 00729 { 10531, "B*_s0^0" }, 00730 { -10531, "B*_s0~^0" }, 00731 { 533, "B*_s^0" }, 00732 { -533, "B*_s~^0" }, 00733 { 10533, "B_s1(L)^0" }, 00734 { -10533, "B_s1(L)~^0" }, 00735 { 20533, "B_s1(H)^0" }, 00736 { -20533, "B_s1(H)~^0" }, 00737 { 535, "B*_s2^0" }, 00738 { -535, "B*_s2~^0" }, 00739 { 541, "B_c^+" }, 00740 { -541, "B_c^-" }, 00741 { 10541, "B*_c0^+" }, 00742 { -10541, "B*_c0^-" }, 00743 { 543, "B*_c^+" }, 00744 { -543, "B*_c^-" }, 00745 { 10543, "B_c1(L)^+" }, 00746 { -10543, "B_c1(L)^-" }, 00747 { 20543, "B_c1(H)^+" }, 00748 { -20543, "B_c1(H)^-" }, 00749 { 545, "B*_c2^+" }, 00750 { -545, "B*_c2^-" }, 00751 { 551, "eta_b(1S)" }, 00752 { 10551, "chi_b0(1P)" }, 00753 { 100551, "eta_b(2S)" }, 00754 { 110551, "chi_b0(2P)" }, 00755 { 200551, "eta_b(3S)" }, 00756 { 210551, "chi_b0(3P)" }, 00757 { 553, "Upsilon(1S)" }, 00758 { 9000553, "Upsilon(10860)" }, 00759 { 10553, "h_b(1P)" }, 00760 { 9010553, "Upsilon(11020)" }, 00761 { 20553, "chi_b1(1P)" }, 00762 { 9020553, "Upsilon(7S)" }, 00763 { 30553, "Upsilon_1(1D)" }, 00764 { 100553, "Upsilon(2S)" }, 00765 { 110553, "h_b(2P)" }, 00766 { 120553, "chi_b1(2P)" }, 00767 { 130553, "Upsilon_1(2D)" }, 00768 { 200553, "Upsilon(3S)" }, 00769 { 210553, "h_b(3P)" }, 00770 { 220553, "chi_b1(3P)" }, 00771 { 300553, "Upsilon(4S)" }, 00772 { 555, "chi_b2(1P)" }, 00773 { 10555, "eta_b2(1D)" }, 00774 { 20555, "Upsilon_2(1D)" }, 00775 { 100555, "chi_b2(2P)" }, 00776 { 110555, "eta_b2(2D)" }, 00777 { 120555, "Upsilon_2(2D)" }, 00778 { 200555, "chi_b2(3P)" }, 00779 { 557, "Upsilon_3(1D)" }, 00780 { 100557, "Upsilon_3(2D)" }, 00781 { 611, "T^+" }, 00782 { -611, "T^-" }, 00783 { 613, "T*^+" }, 00784 { -613, "T*^-" }, 00785 { 621, "T^0" }, 00786 { -621, "T~^0" }, 00787 { 623, "T*^0" }, 00788 { -623, "T*~^0" }, 00789 { 631, "T_s^+" }, 00790 { -631, "T_s^-" }, 00791 { 633, "T*_s^+" }, 00792 { -633, "T*_s^-" }, 00793 { 641, "T_c^0" }, 00794 { -641, "T_c~^0" }, 00795 { 643, "T*_c^0" }, 00796 { -643, "T*_c~^0" }, 00797 { 651, "T_b^+" }, 00798 { -651, "T_b^-" }, 00799 { 653, "T*_b^+" }, 00800 { -653, "T*_b^-" }, 00801 { 661, "eta_t" }, 00802 { 663, "theta" }, 00803 { 711, "L^0" }, 00804 { -711, "L~^0" }, 00805 { 713, "L*^0" }, 00806 { -713, "L*~^0" }, 00807 { 721, "L^-" }, 00808 { -721, "L^+" }, 00809 { 723, "L*^-" }, 00810 { -723, "L*^+" }, 00811 { 731, "L_s^0" }, 00812 { -731, "L_s~^0" }, 00813 { 733, "L*_s^0" }, 00814 { -733, "L*_s~^0" }, 00815 { 741, "L_c^-" }, 00816 { -741, "L_c^+" }, 00817 { 743, "L*_c^-" }, 00818 { -743, "L*_c^+" }, 00819 { 751, "L_b^0" }, 00820 { -751, "L_b~^0" }, 00821 { 753, "L*_b^0" }, 00822 { -753, "L*_b~^0" }, 00823 { 761, "L_t^-" }, 00824 { -761, "L_t^+" }, 00825 { 763, "L*_t^-" }, 00826 { -763, "L*_t^+" }, 00827 { 771, "eta_l" }, 00828 { 773, "theta_l" }, 00829 { 811, "H^+" }, 00830 { -811, "H^-" }, 00831 { 813, "H*^+" }, 00832 { -813, "H*^-" }, 00833 { 821, "H^0" }, 00834 { -821, "H~^0" }, 00835 { 823, "H*^0" }, 00836 { -823, "H*~^0" }, 00837 { 831, "H_s^+" }, 00838 { -831, "H_s^-" }, 00839 { 833, "H*_s^+" }, 00840 { -833, "H*_s^-" }, 00841 { 841, "H_c^0" }, 00842 { -841, "H_c~^0" }, 00843 { 843, "H*_c^0" }, 00844 { -843, "H*_c~^0" }, 00845 { 851, "H_b^+" }, 00846 { -851, "H_b^-" }, 00847 { 853, "H*_b^+" }, 00848 { -853, "H*_b^-" }, 00849 { 861, "H_t^0" }, 00850 { -861, "H_t~^0" }, 00851 { 863, "H*_t^0" }, 00852 { -863, "H*_t~^0" }, 00853 { 871, "H_l^+" }, 00854 { -871, "H_l^-" }, 00855 { 873, "H*_l^+" }, 00856 { -873, "H*_l^-" }, 00857 { 881, "eta_h" }, 00858 { 883, "theta_H" }, 00859 { 2112, "n^0" }, 00860 { -2112, "n~^0" }, 00861 { 2212, "p^+" }, 00862 { -2212, "p~^-" }, 00863 { 12212, "N(1440)^+"}, 00864 { 12112, "N(1440)^0"}, 00865 { 22212, "N(1535)^+"}, 00866 { 22112, "N(1535)^0"}, 00867 { 32212, "N(1650)^+"}, 00868 { 32112, "N(1650)^0"}, 00869 { 42212, "N(1710)^+"}, 00870 { 42112, "N(1710)^0"}, 00871 { 1214, "N(1520)^0"}, 00872 { 2124, "N(1520)^+"}, 00873 { 21214, "N(1700)^0"}, 00874 { 22124, "N(1700)^+"}, 00875 { 31214, "N(1720)^0"}, 00876 { 32124, "N(1720)^+"}, 00877 { 2116, "N(1675)^0"}, 00878 { 2216, "N(1675)^+"}, 00879 { 12116, "N(1680)^0"}, 00880 { 12216, "N(1680)^+"}, 00881 { 1218, "N(2190)^0"}, 00882 { 2128, "N(2190)^+" }, 00883 { 1114, "Delta^-" }, 00884 { -1114, "Delta~^+" }, 00885 { 2114, "Delta^0" }, 00886 { -2114, "Delta~^0" }, 00887 { 2214, "Delta^+" }, 00888 { -2214, "Delta~^-" }, 00889 { 2224, "Delta^++" }, 00890 { -2224, "Delta~^--" }, 00891 { 31114, "Delta(1600)^-" }, 00892 { 32114, "Delta(1600)^0" }, 00893 { 32214, "Delta(1600)^+" }, 00894 { 32224, "Delta(1600)^++" }, 00895 { 1112, "Delta(1620)^-" }, 00896 { 1212, "Delta(1620)^0" }, 00897 { 2122, "Delta(1620)^+" }, 00898 { 2222, "Delta(1620)^++" }, 00899 { 11114, "Delta(1700)^-" }, 00900 { 12114, "Delta(1700)^0" }, 00901 { 12214, "Delta(1700)^+" }, 00902 { 12224, "Delta(1700)^++" }, 00903 { 1116, "Delta(1905)^-" }, 00904 { 1216, "Delta(1905)^0" }, 00905 { 2126, "Delta(1905)^+" }, 00906 { 2226, "Delta(1905)^++" }, 00907 { 21112, "Delta(1910)^-" }, 00908 { 21212, "Delta(1910)^0" }, 00909 { 22122, "Delta(1910)^+" }, 00910 { 22222, "Delta(1910)^++" }, 00911 { 21114, "Delta(1920)^-" }, 00912 { 22114, "Delta(1920)^0" }, 00913 { 22214, "Delta(1920)^+" }, 00914 { 22224, "Delta(1920)^++" }, 00915 { 11116, "Delta(1930)^-" }, 00916 { 11216, "Delta(1930)^0" }, 00917 { 12126, "Delta(1930)^+" }, 00918 { 12226, "Delta(1930)^++" }, 00919 { 1118, "Delta(1950)^-" }, 00920 { 2118, "Delta(1950)^0" }, 00921 { 2218, "Delta(1950)^+" }, 00922 { 2228, "Delta(1950)^++" }, 00923 { 3122, "Lambda^0" }, 00924 { -3122, "Lambda~^0" }, 00925 { 13122, "Lambda(1405)^0" }, 00926 { -13122, "Lambda~(1405)^0" }, 00927 { 23122, "Lambda(1600)^0" }, 00928 { -23122, "Lambda~(1600)^0" }, 00929 { 33122, "Lambda(1670)^0" }, 00930 { -33122, "Lambda~(1670)^0" }, 00931 { 43122, "Lambda(1800)^0" }, 00932 { -43122, "Lambda~(1800)^0" }, 00933 { 53122, "Lambda(1810)^0" }, 00934 { -53122, "Lambda~(1810)^0" }, 00935 { 3124, "Lambda(1520)^0" }, 00936 { -3124, "Lambda~(1520)^0" }, 00937 { 13124, "Lambda(1690)^0" }, 00938 { -13124, "Lambda~(1690)^0" }, 00939 { 23124, "Lambda(1890)^0" }, 00940 { -23124, "Lambda~(1890)^0" }, 00941 { 3126, "Lambda(1820)^0" }, 00942 { -3126, "Lambda~(1820)^0" }, 00943 { 13126, "Lambda(1830)^0" }, 00944 { -13126, "Lambda~(1830)^0" }, 00945 { 23126, "Lambda(2110)^0" }, 00946 { -23126, "Lambda~(2110)^0" }, 00947 { 3128, "Lambda(2100)^0" }, 00948 { -3128, "Lambda~(2100)^0" }, 00949 { 3112, "Sigma^-" }, 00950 { -3112, "Sigma~^+" }, 00951 { 3212, "Sigma^0" }, 00952 { -3212, "Sigma~^0" }, 00953 { 3222, "Sigma^+" }, 00954 { -3222, "Sigma~^-" }, 00955 { 13222, "Sigma(1660)^+" }, 00956 { -13222, "Sigma~(1660)^+" }, 00957 { 13212, "Sigma(1660)^0" }, 00958 { -13212, "Sigma~(1660)^0" }, 00959 { 13112, "Sigma(1660)^-" }, 00960 { -13112, "Sigma~(1660)^-" }, 00961 { 23112, "Sigma(1750)^-" }, 00962 { -23112, "Sigma~(1750)^-" }, 00963 { 23212, "Sigma(1750)^0" }, 00964 { -23212, "Sigma~(1750)^0" }, 00965 { 23222, "Sigma(1750)^+" }, 00966 { -23222, "Sigma~(1750)^+" }, 00967 { 3114, "Sigma*^-" }, 00968 { -3114, "Sigma*~^+" }, 00969 { 3214, "Sigma*^0" }, 00970 { -3214, "Sigma*~^0" }, 00971 { 3224, "Sigma*^+" }, 00972 { -3224, "Sigma*~^-" }, 00973 { 13224, "Sigma(1670)^+" }, 00974 { -13224, "Sigma~(1670)^+" }, 00975 { 13214, "Sigma(1670)^0" }, 00976 { -13214, "Sigma~(1670)^0" }, 00977 { 13114, "Sigma(1670)^-" }, 00978 { -13114, "Sigma~(1670)^-" }, 00979 { 23224, "Sigma(1940)^+" }, 00980 { -23224, "Sigma~(1940)^+" }, 00981 { 23214, "Sigma(1940)^0" }, 00982 { -23214, "Sigma~(1940)^0" }, 00983 { 23114, "Sigma(1940)^-" }, 00984 { -23114, "Sigma~(1940)^-" }, 00985 { 3226, "Sigma(1775)^+" }, 00986 { -3226, "Sigma~(1775)^+" }, 00987 { 3216, "Sigma(1775)^0" }, 00988 { -3216, "Sigma~(1775)^0" }, 00989 { 3116, "Sigma(1775)^-" }, 00990 { -3116, "Sigma~(1775)^-" }, 00991 { 13226, "Sigma(1915)^+" }, 00992 { -13226, "Sigma~(1915)^+" }, 00993 { 13216, "Sigma(1915)^0" }, 00994 { -13216, "Sigma~(1915)^0" }, 00995 { 13116, "Sigma(1915)^-" }, 00996 { -13116, "Sigma~(1915)^-" }, 00997 { 3228, "Sigma(2030)^+" }, 00998 { -3228, "Sigma~(2030)^+" }, 00999 { 3218, "Sigma(2030)^0" }, 01000 { -3218, "Sigma~(2030)^0" }, 01001 { 3118, "Sigma(2030)^-" }, 01002 { -3118, "Sigma~(2030)^-" }, 01003 { 3312, "Xi^-" }, 01004 { -3312, "Xi~^+" }, 01005 { 3322, "Xi^0" }, 01006 { -3322, "Xi~^0" }, 01007 { 3314, "Xi*^-" }, 01008 { -3314, "Xi*~^+" }, 01009 { 3324, "Xi*^0" }, 01010 { -3324, "Xi*~^0" }, 01011 { 13314, "Xi(1820)^-" }, 01012 { -13314, "Xi(1820)~^+" }, 01013 { 13324, "Xi(1820)^0" }, 01014 { -13324, "Xi(1820)~^0" }, 01015 { 3334, "Omega^-" }, 01016 { -3334, "Omega~^+" }, 01017 { 4112, "Sigma_c^0" }, 01018 { -4112, "Sigma_c~^0" }, 01019 { 4114, "Sigma*_c^0" }, 01020 { -4114, "Sigma*_c~^0" }, 01021 { 4122, "Lambda_c^+" }, 01022 { -4122, "Lambda_c~^-" }, 01023 { 14122, "Lambda_c(2593)^+" }, 01024 { -14122, "Lambda_c~(2593)^-" }, 01025 { 14124, "Lambda_c(2625)^+" }, 01026 { -14124, "Lambda_c~(2625)^-" }, 01027 { 4132, "Xi_c^0" }, 01028 { -4132, "Xi_c~^0" }, 01029 { 4212, "Sigma_c^+" }, 01030 { -4212, "Sigma_c~^-" }, 01031 { 4214, "Sigma*_c^+" }, 01032 { -4214, "Sigma*_c~^-" }, 01033 { 4222, "Sigma_c^++" }, 01034 { -4222, "Sigma_c~^--" }, 01035 { 4224, "Sigma*_c^++" }, 01036 { -4224, "Sigma*_c~^--" }, 01037 { 4232, "Xi_c^+" }, 01038 { -4232, "Xi_c~^-" }, 01039 { 4312, "Xi'_c^0" }, 01040 { -4312, "Xi'_c~^0" }, 01041 { 4314, "Xi*_c^0" }, 01042 { -4314, "Xi*_c~^0" }, 01043 { 4322, "Xi'_c^+" }, 01044 { -4322, "Xi'_c~^-" }, 01045 { 4324, "Xi*_c^+" }, 01046 { -4324, "Xi*_c~^-" }, 01047 { 4332, "Omega_c^0" }, 01048 { -4332, "Omega_c~^0" }, 01049 { 4334, "Omega*_c^0" }, 01050 { -4334, "Omega*_c~^0" }, 01051 { 4412, "Xi_cc^+" }, 01052 { -4412, "Xi_cc~^-" }, 01053 { 4414, "Xi*_cc^+" }, 01054 { -4414, "Xi*_cc~^-" }, 01055 { 4422, "Xi_cc^++" }, 01056 { -4422, "Xi_cc~^--" }, 01057 { 4424, "Xi*_cc^++" }, 01058 { -4424, "Xi*_cc~^--" }, 01059 { 4432, "Omega_cc^+" }, 01060 { -4432, "Omega_cc~^-" }, 01061 { 4434, "Omega*_cc^+" }, 01062 { -4434, "Omega*_cc~^-" }, 01063 { 4444, "Omega*_ccc^++" }, 01064 { -4444, "Omega*_ccc~^--" }, 01065 { 5112, "Sigma_b^-" }, 01066 { -5112, "Sigma_b~^+" }, 01067 { 5114, "Sigma*_b^-" }, 01068 { -5114, "Sigma*_b~^+" }, 01069 { 5122, "Lambda_b^0" }, 01070 { -5122, "Lambda_b~^0" }, 01071 { 5132, "Xi_b^-" }, 01072 { -5132, "Xi_b~^+" }, 01073 { 5142, "Xi_bc^0" }, 01074 { -5142, "Xi_bc~^0" }, 01075 { 5212, "Sigma_b^0" }, 01076 { -5212, "Sigma_b~^0" }, 01077 { 5214, "Sigma*_b^0" }, 01078 { -5214, "Sigma*_b~^0" }, 01079 { 5222, "Sigma_b^+" }, 01080 { -5222, "Sigma_b~^-" }, 01081 { 5224, "Sigma*_b^+" }, 01082 { -5224, "Sigma*_b~^-" }, 01083 { 5232, "Xi_b^0" }, 01084 { -5232, "Xi_b~^0" }, 01085 { 5242, "Xi_bc^+" }, 01086 { -5242, "Xi_bc~^-" }, 01087 { 5312, "Xi'_b^-" }, 01088 { -5312, "Xi'_b~^+" }, 01089 { 5314, "Xi*_b^-" }, 01090 { -5314, "Xi*_b~^+" }, 01091 { 5322, "Xi'_b^0" }, 01092 { -5322, "Xi'_b~^0" }, 01093 { 5324, "Xi*_b^0" }, 01094 { -5324, "Xi*_b~^0" }, 01095 { 5332, "Omega_b^-" }, 01096 { -5332, "Omega_b~^+" }, 01097 { 5334, "Omega*_b^-" }, 01098 { -5334, "Omega*_b~^+" }, 01099 { 5342, "Omega_bc^0" }, 01100 { -5342, "Omega_bc~^0" }, 01101 { 5412, "Xi'_bc^0" }, 01102 { -5412, "Xi'_bc~^0" }, 01103 { 5414, "Xi*_bc^0" }, 01104 { -5414, "Xi*_bc~^0" }, 01105 { 5422, "Xi'_bc^+" }, 01106 { -5422, "Xi'_bc~^-" }, 01107 { 5424, "Xi*_bc^+" }, 01108 { -5424, "Xi*_bc~^-" }, 01109 { 5432, "Omega'_bc^0" }, 01110 { -5432, "Omega'_bc~^0" }, 01111 { 5434, "Omega*_bc^0" }, 01112 { -5434, "Omega*_bc~^0" }, 01113 { 5442, "Omega_bcc^+" }, 01114 { -5442, "Omega_bcc~^-" }, 01115 { 5444, "Omega*_bcc^+" }, 01116 { -5444, "Omega*_bcc~^-" }, 01117 { 5512, "Xi_bb^-" }, 01118 { -5512, "Xi_bb~^+" }, 01119 { 5514, "Xi*_bb^-" }, 01120 { -5514, "Xi*_bb~^+" }, 01121 { 5522, "Xi_bb^0" }, 01122 { -5522, "Xi_bb~^0" }, 01123 { 5524, "Xi*_bb^0" }, 01124 { -5524, "Xi*_bb~^0" }, 01125 { 5532, "Omega_bb^-" }, 01126 { -5532, "Omega_bb~^+" }, 01127 { 5534, "Omega*_bb^-" }, 01128 { -5534, "Omega*_bb~^+" }, 01129 { 5542, "Omega_bbc^0" }, 01130 { -5542, "Omega_bbc~^0" }, 01131 { 5544, "Omega*_bbc^0" }, 01132 { -5544, "Omega*_bbc~^0" }, 01133 { 5554, "Omega*_bbb^-" }, 01134 { -5554, "Omega*_bbb~^+" }, 01135 { 6112, "Sigma_t^0" }, 01136 { -6112, "Sigma_t~^0" }, 01137 { 6114, "Sigma*_t^0" }, 01138 { -6114, "Sigma*_t~^0" }, 01139 { 6122, "Lambda_t^+" }, 01140 { -6122, "Lambda_t~^-" }, 01141 { 6132, "Xi_t^0" }, 01142 { -6132, "Xi_t~^0" }, 01143 { 6142, "Xi_tc^+" }, 01144 { -6142, "Xi_tc~^-" }, 01145 { 6152, "Xi_tb^0" }, 01146 { -6152, "Xi_tb~^0" }, 01147 { 6212, "Sigma_t^+" }, 01148 { -6212, "Sigma_t~^-" }, 01149 { 6214, "Sigma*_t^+" }, 01150 { -6214, "Sigma*_t~^-" }, 01151 { 6222, "Sigma_t^++" }, 01152 { -6222, "Sigma_t~^--" }, 01153 { 6224, "Sigma*_t^++" }, 01154 { -6224, "Sigma*_t~^--" }, 01155 { 6232, "Xi_t^+" }, 01156 { -6232, "Xi_t~^-" }, 01157 { 6242, "Xi_tc^++" }, 01158 { -6242, "Xi_tc~^--" }, 01159 { 6252, "Xi_tb^+" }, 01160 { -6252, "Xi_tb~^-" }, 01161 { 6312, "Xi'_t^0" }, 01162 { -6312, "Xi'_t~^0" }, 01163 { 6314, "Xi*_t^0" }, 01164 { -6314, "Xi*_t~^0" }, 01165 { 6322, "Xi'_t^+" }, 01166 { -6322, "Xi'_t~^-" }, 01167 { 6324, "Xi*_t^+" }, 01168 { -6324, "Xi*_t~^-" }, 01169 { 6332, "Omega_t^0" }, 01170 { -6332, "Omega_t~^0" }, 01171 { 6334, "Omega*_t^0" }, 01172 { -6334, "Omega*_t~^0" }, 01173 { 6342, "Omega_tc^+" }, 01174 { -6342, "Omega_tc~^-" }, 01175 { 6352, "Omega_tb^0" }, 01176 { -6352, "Omega_tb~^0" }, 01177 { 6412, "Xi'_tc^+" }, 01178 { -6412, "Xi'_tc~^-" }, 01179 { 6414, "Xi*_tc^+" }, 01180 { -6414, "Xi*_tc~^-" }, 01181 { 6422, "Xi'_tc^++" }, 01182 { -6422, "Xi'_tc~^--" }, 01183 { 6424, "Xi*_tc^++" }, 01184 { -6424, "Xi*_tc~^--" }, 01185 { 6432, "Omega'_tc^+" }, 01186 { -6432, "Omega'_tc~^-" }, 01187 { 6434, "Omega*_tc^+" }, 01188 { -6434, "Omega*_tc~^-" }, 01189 { 6442, "Omega_tcc^++" }, 01190 { -6442, "Omega_tcc~^--" }, 01191 { 6444, "Omega*_tcc^++" }, 01192 { -6444, "Omega*_tcc~^--" }, 01193 { 6452, "Omega_tbc^+" }, 01194 { -6452, "Omega_tbc~^-" }, 01195 { 6512, "Xi'_tb^0" }, 01196 { -6512, "Xi'_tb~^0" }, 01197 { 6514, "Xi*_tb^0" }, 01198 { -6514, "Xi*_tb~^0" }, 01199 { 6522, "Xi'_tb^+" }, 01200 { -6522, "Xi'_tb~^-" }, 01201 { 6524, "Xi*_tb^+" }, 01202 { -6524, "Xi*_tb~^-" }, 01203 { 6532, "Omega'_tb^0" }, 01204 { -6532, "Omega'_tb~^0" }, 01205 { 6534, "Omega*_tb^0" }, 01206 { -6534, "Omega*_tb~^0" }, 01207 { 6542, "Omega'_tbc^+" }, 01208 { -6542, "Omega'_tbc~^-" }, 01209 { 6544, "Omega*_tbc^+" }, 01210 { -6544, "Omega*_tbc~^-" }, 01211 { 6552, "Omega_tbb^0" }, 01212 { -6552, "Omega_tbb~^0" }, 01213 { 6554, "Omega*_tbb^0" }, 01214 { -6554, "Omega*_tbb~^0" }, 01215 { 6612, "Xi_tt^+" }, 01216 { -6612, "Xi_tt~^-" }, 01217 { 6614, "Xi*_tt^+" }, 01218 { -6614, "Xi*_tt~^-" }, 01219 { 6622, "Xi_tt^++" }, 01220 { -6622, "Xi_tt~^--" }, 01221 { 6624, "Xi*_tt^++" }, 01222 { -6624, "Xi*_tt~^--" }, 01223 { 6632, "Omega_tt^+" }, 01224 { -6632, "Omega_tt~^-" }, 01225 { 6634, "Omega*_tt^+" }, 01226 { -6634, "Omega*_tt~^-" }, 01227 { 6642, "Omega_ttc^++" }, 01228 { -6642, "Omega_ttc~^--" }, 01229 { 6644, "Omega*_ttc^++" }, 01230 { -6644, "Omega*_ttc~^--" }, 01231 { 6652, "Omega_ttb^+" }, 01232 { -6652, "Omega_ttb~^-" }, 01233 { 6654, "Omega*_ttb^+" }, 01234 { -6654, "Omega*_ttb~^-" }, 01235 { 6664, "Omega*_ttt^++" }, 01236 { -6664, "Omega*_ttt~^--" }, 01237 { 7112, "Sigma_b'^-" }, 01238 { -7112, "Sigma_b'~^+" }, 01239 { 7114, "Sigma*_b'^-" }, 01240 { -7114, "Sigma*_b'~^+" }, 01241 { 7122, "Lambda_b'^0" }, 01242 { -7122, "Lambda_b'~^0" }, 01243 { 7132, "Xi_b'^-" }, 01244 { -7132, "Xi_b'~^+" }, 01245 { 7142, "Xi_b'c^0" }, 01246 { -7142, "Xi_b'c~^0" }, 01247 { 7152, "Xi_b'b^-" }, 01248 { -7152, "Xi_b'b~^+" }, 01249 { 7162, "Xi_b't^0" }, 01250 { -7162, "Xi_b't~^0" }, 01251 { 7212, "Sigma_b'^0" }, 01252 { -7212, "Sigma_b'~^0" }, 01253 { 7214, "Sigma*_b'^0" }, 01254 { -7214, "Sigma*_b'~^0" }, 01255 { 7222, "Sigma_b'^+" }, 01256 { -7222, "Sigma_b'~^-" }, 01257 { 7224, "Sigma*_b'^+" }, 01258 { -7224, "Sigma*_b'~^-" }, 01259 { 7232, "Xi_b'^0" }, 01260 { -7232, "Xi_b'~^0" }, 01261 { 7242, "Xi_b'c^+" }, 01262 { -7242, "Xi_b'c~^-" }, 01263 { 7252, "Xi_b'b^0" }, 01264 { -7252, "Xi_b'b~^0" }, 01265 { 7262, "Xi_b't^+" }, 01266 { -7262, "Xi_b't~^-" }, 01267 { 7312, "Xi'_b'^-" }, 01268 { -7312, "Xi'_b'~^+" }, 01269 { 7314, "Xi*_b'^-" }, 01270 { -7314, "Xi*_b'~^+" }, 01271 { 7322, "Xi'_b'^0" }, 01272 { -7322, "Xi'_b'~^0" }, 01273 { 7324, "Xi*_b'^0" }, 01274 { -7324, "Xi*_b'~^0" }, 01275 { 7332, "Omega'_b'^-" }, 01276 { -7332, "Omega'_b'~^+" }, 01277 { 7334, "Omega*_b'^-" }, 01278 { -7334, "Omega*_b'~^+" }, 01279 { 7342, "Omega_b'c^0" }, 01280 { -7342, "Omega_b'c~^0" }, 01281 { 7352, "Omega_b'b^-" }, 01282 { -7352, "Omega_b'b~^+" }, 01283 { 7362, "Omega_b't^0" }, 01284 { -7362, "Omega_b't~^0" }, 01285 { 7412, "Xi'_b'c^0" }, 01286 { -7412, "Xi'_b'c~^0" }, 01287 { 7414, "Xi*_b'c^0" }, 01288 { -7414, "Xi*_b'c~^0" }, 01289 { 7422, "Xi'_b'c^+" }, 01290 { -7422, "Xi'_b'c~^-" }, 01291 { 7424, "Xi*_b'c^+" }, 01292 { -7424, "Xi*_b'c~^-" }, 01293 { 7432, "Omega'_b'c^0" }, 01294 { -7432, "Omega'_b'c~^0" }, 01295 { 7434, "Omega*_b'c^0" }, 01296 { -7434, "Omega*_b'c~^0" }, 01297 { 7442, "Omega'_b'cc^+" }, 01298 { -7442, "Omega'_b'cc~^-" }, 01299 { 7444, "Omega*_b'cc^+" }, 01300 { -7444, "Omega*_b'cc~^-" }, 01301 { 7452, "Omega_b'bc^0" }, 01302 { -7452, "Omega_b'bc~^0" }, 01303 { 7462, "Omega_b'tc^+" }, 01304 { -7462, "Omega_b'tc~^-" }, 01305 { 7512, "Xi'_b'b^-" }, 01306 { -7512, "Xi'_b'b~^+" }, 01307 { 7514, "Xi*_b'b^-" }, 01308 { -7514, "Xi*_b'b~^+" }, 01309 { 7522, "Xi'_b'b^0" }, 01310 { -7522, "Xi'_b'b~^0" }, 01311 { 7524, "Xi*_b'b^0" }, 01312 { -7524, "Xi*_b'b~^0" }, 01313 { 7532, "Omega'_b'b^-" }, 01314 { -7532, "Omega'_b'b~^+" }, 01315 { 7534, "Omega*_b'b^-" }, 01316 { -7534, "Omega*_b'b~^+" }, 01317 { 7542, "Omega'_b'bc^0" }, 01318 { -7542, "Omega'_b'bc~^0" }, 01319 { 7544, "Omega*_b'bc^0" }, 01320 { -7544, "Omega*_b'bc~^0" }, 01321 { 7552, "Omega'_b'bb^-" }, 01322 { -7552, "Omega'_b'bb~^+" }, 01323 { 7554, "Omega*_b'bb^-" }, 01324 { -7554, "Omega*_b'bb~^+" }, 01325 { 7562, "Omega_b'tb^0" }, 01326 { -7562, "Omega_b'tb~^0" }, 01327 { 7612, "Xi'_b't^0" }, 01328 { -7612, "Xi'_b't~^0" }, 01329 { 7614, "Xi*_b't^0" }, 01330 { -7614, "Xi*_b't~^0" }, 01331 { 7622, "Xi'_b't^+" }, 01332 { -7622, "Xi'_b't~^-" }, 01333 { 7624, "Xi*_b't^+" }, 01334 { -7624, "Xi*_b't~^-" }, 01335 { 7632, "Omega'_b't^0" }, 01336 { -7632, "Omega'_b't~^0" }, 01337 { 7634, "Omega*_b't^0" }, 01338 { -7634, "Omega*_b't~^0" }, 01339 { 7642, "Omega'_b'tc^+" }, 01340 { -7642, "Omega'_b'tc~^-" }, 01341 { 7644, "Omega*_b'tc^+" }, 01342 { -7644, "Omega*_b'tc~^-" }, 01343 { 7652, "Omega'_b'tb^0" }, 01344 { -7652, "Omega'_b'tb~^0" }, 01345 { 7654, "Omega*_b'tb^0" }, 01346 { -7654, "Omega*_b'tb~^0" }, 01347 { 7662, "Omega'_b'tt^+" }, 01348 { -7662, "Omega'_b'tt~^-" }, 01349 { 7664, "Omega*_b'tt^+" }, 01350 { -7664, "Omega*_b'tt~^-" }, 01351 { 7712, "Xi'_b'b'^-" }, 01352 { -7712, "Xi'_b'b'~^+" }, 01353 { 7714, "Xi*_b'b'^-" }, 01354 { -7714, "Xi*_b'b'~^+" }, 01355 { 7722, "Xi'_b'b'^0" }, 01356 { -7722, "Xi'_b'b'~^0" }, 01357 { 7724, "Xi*_b'b'^0" }, 01358 { -7724, "Xi*_b'b'~^0" }, 01359 { 7732, "Omega'_b'b'^-" }, 01360 { -7732, "Omega'_b'b'~^+" }, 01361 { 7734, "Omega*_b'b'^-" }, 01362 { -7734, "Omega*_b'b'~^+" }, 01363 { 7742, "Omega'_b'b'c^0" }, 01364 { -7742, "Omega'_b'b'c~^0" }, 01365 { 7744, "Omega*_b'b'c^0" }, 01366 { -7744, "Omega*_b'b'c~^0" }, 01367 { 7752, "Omega'_b'b'b^-" }, 01368 { -7752, "Omega'_b'b'b~^+" }, 01369 { 7754, "Omega*_b'b'b^-" }, 01370 { -7754, "Omega*_b'b'b~^+" }, 01371 { 7762, "Omega'_b'b't^0" }, 01372 { -7762, "Omega'_b'b't~^0" }, 01373 { 7764, "Omega*_b'b't^0" }, 01374 { -7764, "Omega*_b'b't~^0" }, 01375 { 7774, "Omega*_b'b'b'^-" }, 01376 { -7774, "Omega*_b'b'b'~^+" }, 01377 { 8112, "Sigma_t'^0" }, 01378 { -8112, "Sigma_t'~^0" }, 01379 { 8114, "Sigma*_t'^0" }, 01380 { -8114, "Sigma*_t'~^0" }, 01381 { 8122, "Lambda_t'^+" }, 01382 { -8122, "Lambda_t'~^-" }, 01383 { 8132, "Xi_t'^0" }, 01384 { -8132, "Xi_t'~^0" }, 01385 { 8142, "Xi_t'c^+" }, 01386 { -8142, "Xi_t'c~^-" }, 01387 { 8152, "Xi_t'b^0" }, 01388 { -8152, "Xi_t'b~^0" }, 01389 { 8162, "Xi_t't^+" }, 01390 { -8162, "Xi_t't~^-" }, 01391 { 8172, "Xi_t'b'^0" }, 01392 { -8172, "Xi_t'b'~^0" }, 01393 { 8212, "Sigma_t'^+" }, 01394 { -8212, "Sigma_t'~^-" }, 01395 { 8214, "Sigma*_t'^+" }, 01396 { -8214, "Sigma*_t'~^-" }, 01397 { 8222, "Sigma_t'^++" }, 01398 { -8222, "Sigma_t'~^--" }, 01399 { 8224, "Sigma*_t'^++" }, 01400 { -8224, "Sigma*_t'~^--" }, 01401 { 8232, "Xi_t'^+" }, 01402 { -8232, "Xi_t'~^-" }, 01403 { 8242, "Xi_t'c^++" }, 01404 { -8242, "Xi_t'c~^--" }, 01405 { 8252, "Xi_t'b^+" }, 01406 { -8252, "Xi_t'b~^-" }, 01407 { 8262, "Xi_t't^++" }, 01408 { -8262, "Xi_t't~^--" }, 01409 { 8272, "Xi_t'b'^+" }, 01410 { -8272, "Xi_t'b'~^-" }, 01411 { 8312, "Xi'_t'^0" }, 01412 { -8312, "Xi'_t'~^0" }, 01413 { 8314, "Xi*_t'^0" }, 01414 { -8314, "Xi*_t'~^0" }, 01415 { 8322, "Xi'_t'^+" }, 01416 { -8322, "Xi'_t'~^-" }, 01417 { 8324, "Xi*_t'^+" }, 01418 { -8324, "Xi*_t'~^-" }, 01419 { 8332, "Omega'_t'^0" }, 01420 { -8332, "Omega'_t'~^0" }, 01421 { 8334, "Omega*_t'^0" }, 01422 { -8334, "Omega*_t'~^0" }, 01423 { 8342, "Omega_t'c^+" }, 01424 { -8342, "Omega_t'c~^-" }, 01425 { 8352, "Omega_t'b^0" }, 01426 { -8352, "Omega_t'b~^0" }, 01427 { 8362, "Omega_t't^+" }, 01428 { -8362, "Omega_t't~^-" }, 01429 { 8372, "Omega_t'b'^0" }, 01430 { -8372, "Omega_t'b'~^0" }, 01431 { 8412, "Xi'_t'c^+" }, 01432 { -8412, "Xi'_t'c~^-" }, 01433 { 8414, "Xi*_t'c^+" }, 01434 { -8414, "Xi*_t'c~^-" }, 01435 { 8422, "Xi'_t'c^++" }, 01436 { -8422, "Xi'_t'c~^--" }, 01437 { 8424, "Xi*_t'c^++" }, 01438 { -8424, "Xi*_t'c~^--" }, 01439 { 8432, "Omega'_t'c^+" }, 01440 { -8432, "Omega'_t'c~^-" }, 01441 { 8434, "Omega*_t'c^+" }, 01442 { -8434, "Omega*_t'c~^-" }, 01443 { 8442, "Omega'_t'cc^++" }, 01444 { -8442, "Omega'_t'cc~^--" }, 01445 { 8444, "Omega*_t'cc^++" }, 01446 { -8444, "Omega*_t'cc~^--" }, 01447 { 8452, "Omega_t'bc^+" }, 01448 { -8452, "Omega_t'bc~^-" }, 01449 { 8462, "Omega_t'tc^++" }, 01450 { -8462, "Omega_t'tc~^--" }, 01451 { 8472, "Omega_t'b'c ^+" }, 01452 { -8472, "Omega_t'b'c ~^-" }, 01453 { 8512, "Xi'_t'b^0" }, 01454 { -8512, "Xi'_t'b~^0" }, 01455 { 8514, "Xi*_t'b^0" }, 01456 { -8514, "Xi*_t'b~^0" }, 01457 { 8522, "Xi'_t'b^+" }, 01458 { -8522, "Xi'_t'b~^-" }, 01459 { 8524, "Xi*_t'b^+" }, 01460 { -8524, "Xi*_t'b~^-" }, 01461 { 8532, "Omega'_t'b^0" }, 01462 { -8532, "Omega'_t'b~^0" }, 01463 { 8534, "Omega*_t'b^0" }, 01464 { -8534, "Omega*_t'b~^0" }, 01465 { 8542, "Omega'_t'bc^+" }, 01466 { -8542, "Omega'_t'bc~^-" }, 01467 { 8544, "Omega*_t'bc^+" }, 01468 { -8544, "Omega*_t'bc~^-" }, 01469 { 8552, "Omega'_t'bb^0" }, 01470 { -8552, "Omega'_t'bb~^0" }, 01471 { 8554, "Omega*_t'bb^0" }, 01472 { -8554, "Omega*_t'bb~^0" }, 01473 { 8562, "Omega_t'tb^+" }, 01474 { -8562, "Omega_t'tb~^-" }, 01475 { 8572, "Omega_t'b'b ^0" }, 01476 { -8572, "Omega_t'b'b ~^0" }, 01477 { 8612, "Xi'_t't^+" }, 01478 { -8612, "Xi'_t't~^-" }, 01479 { 8614, "Xi*_t't^+" }, 01480 { -8614, "Xi*_t't~^-" }, 01481 { 8622, "Xi'_t't^++" }, 01482 { -8622, "Xi'_t't~^--" }, 01483 { 8624, "Xi*_t't^++" }, 01484 { -8624, "Xi*_t't~^--" }, 01485 { 8632, "Omega'_t't^+" }, 01486 { -8632, "Omega'_t't~^-" }, 01487 { 8634, "Omega*_t't^+" }, 01488 { -8634, "Omega*_t't~^-" }, 01489 { 8642, "Omega'_t'tc^++" }, 01490 { -8642, "Omega'_t'tc~^--" }, 01491 { 8644, "Omega*_t'tc^++" }, 01492 { -8644, "Omega*_t'tc~^--" }, 01493 { 8652, "Omega'_t'tb^+" }, 01494 { -8652, "Omega'_t'tb~^-" }, 01495 { 8654, "Omega*_t'tb^+" }, 01496 { -8654, "Omega*_t'tb~^-" }, 01497 { 8662, "Omega'_t'tt^++" }, 01498 { -8662, "Omega'_t'tt~^--" }, 01499 { 8664, "Omega*_t'tt^++" }, 01500 { -8664, "Omega*_t'tt~^--" }, 01501 { 8672, "Omega_t'b't ^+" }, 01502 { -8672, "Omega_t'b't ~^-" }, 01503 { 8712, "Xi'_t'b'^0" }, 01504 { -8712, "Xi'_t'b'~^0" }, 01505 { 8714, "Xi*_t'b'^0" }, 01506 { -8714, "Xi*_t'b'~^0" }, 01507 { 8722, "Xi'_t'b'^+" }, 01508 { -8722, "Xi'_t'b'~^-" }, 01509 { 8724, "Xi*_t'b'^+" }, 01510 { -8724, "Xi*_t'b'~^-" }, 01511 { 8732, "Omega'_t'b'^0" }, 01512 { -8732, "Omega'_t'b'~^0" }, 01513 { 8734, "Omega*_t'b'^0" }, 01514 { -8734, "Omega*_t'b'~^0" }, 01515 { 8742, "Omega'_t'b'c^+" }, 01516 { -8742, "Omega'_t'b'c~^-" }, 01517 { 8744, "Omega*_t'b'c^+" }, 01518 { -8744, "Omega*_t'b'c~^-" }, 01519 { 8752, "Omega'_t'b'b^0" }, 01520 { -8752, "Omega'_t'b'b~^0" }, 01521 { 8754, "Omega*_t'b'b^0" }, 01522 { -8754, "Omega*_t'b'b~^0" }, 01523 { 8762, "Omega'_t'b't^+" }, 01524 { -8762, "Omega'_t'b't~^-" }, 01525 { 8764, "Omega*_t'b't^+" }, 01526 { -8764, "Omega*_t'b't~^-" }, 01527 { 8772, "Omega'_t'b'b'^0" }, 01528 { -8772, "Omega'_t'b'b'~^0" }, 01529 { 8774, "Omega*_t'b'b'^0" }, 01530 { -8774, "Omega*_t'b'b'~^0" }, 01531 { 8812, "Xi'_t't'^+" }, 01532 { -8812, "Xi'_t't'~^-" }, 01533 { 8814, "Xi*_t't'^+" }, 01534 { -8814, "Xi*_t't'~^-" }, 01535 { 8822, "Xi'_t't'^++" }, 01536 { -8822, "Xi'_t't'~^--" }, 01537 { 8824, "Xi*_t't'^++" }, 01538 { -8824, "Xi*_t't'~^--" }, 01539 { 8832, "Omega'_t't'^+" }, 01540 { -8832, "Omega'_t't'~^-" }, 01541 { 8834, "Omega*_t't'^+" }, 01542 { -8834, "Omega*_t't'~^-" }, 01543 { 8842, "Omega'_t't'c^++" }, 01544 { -8842, "Omega'_t't'c~^--" }, 01545 { 8844, "Omega*_t't'c^++" }, 01546 { -8844, "Omega*_t't'c~^--" }, 01547 { 8852, "Omega'_t't'b^+" }, 01548 { -8852, "Omega'_t't'b~^-" }, 01549 { 8854, "Omega*_t't'b^+" }, 01550 { -8854, "Omega*_t't'b~^-" }, 01551 { 8862, "Omega'_t't't^++" }, 01552 { -8862, "Omega'_t't't~^--" }, 01553 { 8864, "Omega*_t't't^++" }, 01554 { -8864, "Omega*_t't't~^--" }, 01555 { 8872, "Omega'_t't'b'^+" }, 01556 { -8872, "Omega'_t't'b'~^-" }, 01557 { 8874, "Omega*_t't'b'^+" }, 01558 { -8874, "Omega*_t't'b'~^-" }, 01559 { 8884, "Omega*_t't't'^++" }, 01560 { -8884, "Omega*_t't't'~^--" }, 01561 { 9221132, "Theta^+" }, 01562 { 9331122, "Phi^--" }, 01563 { 1000993, "R_~gg^0" }, 01564 { 1009113, "R_~gd~d^0" }, 01565 { 1009213, "R_~gu~d^+" }, 01566 { 1009223, "R_~gu~u^0" }, 01567 { 1009313, "R_~gd~s^0" }, 01568 { 1009323, "R_~gu~s^+" }, 01569 { 1009333, "R_~gs~s^0" }, 01570 { 1091114, "R_~gddd^-" }, 01571 { 1092114, "R_~gudd^0" }, 01572 { 1092214, "R_~guud^+" }, 01573 { 1092224, "R_~guuu^++" }, 01574 { 1093114, "R_~gsdd^-" }, 01575 { 1093214, "R_~gsud^0" }, 01576 { 1093224, "R_~gsuu^+" }, 01577 { 1093314, "R_~gssd^-" }, 01578 { 1093324, "R_~gssu^0" }, 01579 { 1093334, "R_~gsss^-" }, 01580 { 1000612, "R_~t_1~d^+" }, 01581 { 1000622, "R_~t_1~u^0" }, 01582 { 1000632, "R_~t_1~s^+" }, 01583 { 1000642, "R_~t_1~c^0" }, 01584 { 1000652, "R_~t_1~b^+" }, 01585 { 1006113, "R_~t_1dd_1^0" }, 01586 { 1006211, "R_~t_1ud_0^+" }, 01587 { 1006213, "R_~t_1ud_1^+" }, 01588 { 1006223, "R_~t_1uu_1^++" }, 01589 { 1006311, "R_~t_1sd_0^0" }, 01590 { 1006313, "R_~t_1sd_1^0" }, 01591 { 1006321, "R_~t_1su_0^+" }, 01592 { 1006323, "R_~t_1su_1^+" }, 01593 { 1006333, "R_~t_1ss_1^0" }, 01594 { 1000010010, "Hydrogen" }, 01595 { 1000010020, "Deuterium" }, 01596 {-1000010020, "Anti-Deuterium" }, 01597 { 1000010030, "Tritium" }, 01598 {-1000010030, "Anti-Tritium" }, 01599 { 1000020030, "He3" }, 01600 {-1000020030, "Anti-He3" }, 01601 { 1000020040, "Alpha-(He4)" }, 01602 {-1000020040, "Anti-Alpha-(He4)" } 01603 }; 01604 01605 int lnames = sizeof(SNames)/sizeof(SNames[0]); 01606 for( int k=0; k!=lnames; ++k) { 01607 m.insert( std::make_pair( SNames[k].pid, std::string(SNames[k].pname)) ); 01608 nameMap.insert( std::make_pair( std::string(SNames[k].pname), SNames[k].pid ) ); 01609 } 01610 static ParticleNameMap mymaps(m,nameMap); 01611 01612 return mymaps; 01613 } // ParticleNameInit()
int Rivet::PID::sSpin | ( | const Particle & | p | ) | [inline] |
sSpin returns 2S+1, where S is the spin
Definition at line 153 of file ParticleIdUtils.hh.
References Particle::pdgId(), and sSpin().
00153 { return sSpin(p.pdgId()); }
int sSpin | ( | const int & | pid | ) |
sSpin returns 2S+1, where S is the spin
Definition at line 353 of file ParticleIdUtils.cc.
References digit(), isMeson(), n, nj, and nl.
Referenced by sSpin().
00354 { 00355 if( !isMeson(pid) ) { return 0; } 00356 int inl = digit(nl,pid); 00357 //int tent = digit(n,pid); 00358 int js = digit(nj,pid); 00359 if( digit(n,pid) == 9 ) { return 0; } // tentative ID 00360 //if( tent == 9 ) { return 0; } // tentative assignment 00361 if( inl == 0 && js >= 3 ) { 00362 return 1; 00363 } else if( inl == 0 && js == 1 ) { 00364 return 0; 00365 } else if( inl == 1 && js >= 3 ) { 00366 return 0; 00367 } else if( inl == 2 && js >= 3 ) { 00368 return 1; 00369 } else if( inl == 1 && js == 1 ) { 00370 return 1; 00371 } else if( inl == 3 && js >= 3 ) { 00372 return 1; 00373 } 00374 // default to zero 00375 return 0; 00376 }
int Rivet::PID::threeCharge | ( | const Particle & | p | ) | [inline] |
return 3 times the charge (3 x quark charge is an int)
Definition at line 158 of file ParticleIdUtils.hh.
References Particle::pdgId(), and threeCharge().
Referenced by D0_2008_S7837160::analyze(), D0_1998_S3711838::analyze(), CDF_1991_S2313472::analyze(), Rivet::chargedParticleFilter(), ZFinder::project(), WFinder::project(), NeutralFinalState::project(), and ChargedFinalState::project().
00158 { return threeCharge(p.pdgId()); }
int threeCharge | ( | const int & | pid | ) |
return 3 times the charge (3 x quark charge is an int)
Definition at line 427 of file ParticleIdUtils.cc.
References abspid(), charge(), digit(), extraBits(), fundamentalID(), isBaryon(), isDiQuark(), isMeson(), nj, nq1, nq2, and nq3.
Referenced by MC_SUSY::analyze(), H1_1994_S2919893::analyze(), D0_2010_S8570965::analyze(), charge(), ZFinder::project(), WFinder::project(), NeutralFinalState::project(), ClusteredPhotons::project(), and threeCharge().
00428 { 00429 int charge=0; 00430 int ida, sid; 00431 unsigned short q1, q2, q3; 00432 static int ch100[100] = { -1, 2,-1, 2,-1, 2,-1, 2, 0, 0, 00433 -3, 0,-3, 0,-3, 0,-3, 0, 0, 0, 00434 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 00435 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 00436 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 00437 0, 6, 3, 6, 0, 0, 0, 0, 0, 0, 00438 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00439 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00441 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 00442 q1 = digit(nq1,pid); 00443 q2 = digit(nq2,pid); 00444 q3 = digit(nq3,pid); 00445 ida = abspid(pid); 00446 sid = fundamentalID(pid); 00447 if( ida == 0 || extraBits(pid) > 0 ) { // ion or illegal 00448 return 0; 00449 } else if( sid > 0 && sid <= 100 ) { // use table 00450 charge = ch100[sid-1]; 00451 if(ida==1000017 || ida==1000018) { charge = 0; } 00452 if(ida==1000034 || ida==1000052) { charge = 0; } 00453 if(ida==1000053 || ida==1000054) { charge = 0; } 00454 if(ida==5100061 || ida==5100062) { charge = 6; } 00455 } else if( digit(nj,pid) == 0 ) { // KL, Ks, or undefined 00456 return 0; 00457 } else if( isMeson(pid) ) { // mesons 00458 if( q2 == 3 || q2 == 5 ) { 00459 charge = ch100[q3-1] - ch100[q2-1]; 00460 } else { 00461 charge = ch100[q2-1] - ch100[q3-1]; 00462 } 00463 } else if( isDiQuark(pid) ) { // diquarks 00464 charge = ch100[q2-1] + ch100[q1-1]; 00465 } else if( isBaryon(pid) ) { // baryons 00466 charge = ch100[q3-1] + ch100[q2-1] + ch100[q1-1]; 00467 } else { // unknown 00468 return 0; 00469 } 00470 if( charge == 0 ) { 00471 return 0; 00472 } else if( pid < 0 ) { 00473 charge = -charge; 00474 } 00475 return charge; 00476 }
bool Rivet::PID::validParticleName | ( | const std::string & | s | ) |
Definition at line 1648 of file ParticleName.cc.
References ParticleNameMap::endLookupMap(), ParticleNameMap::findString(), and getParticleNameMap().
01649 { 01650 static ParticleNameMap const & pmap = getParticleNameMap(); 01651 ParticleNameMap::nameIterator const cit = pmap.findString( s ); 01652 return ( cit == pmap.endLookupMap() ) 01653 ? false 01654 : true; 01655 } // validParticleName()
bool Rivet::PID::validParticleName | ( | const int & | pid | ) |
Definition at line 1638 of file ParticleName.cc.
References ParticleNameMap::end(), ParticleNameMap::find(), and getParticleNameMap().
Referenced by writeParticleNameLine().
01639 { 01640 static ParticleNameMap const & pmap = getParticleNameMap(); 01641 01642 ParticleNameMap::idIterator const cit = pmap.find( pid ); 01643 return ( cit == pmap.end() ) 01644 ? false 01645 : true; 01646 } // validParticleName()
void Rivet::PID::@247::writeParticleNameLine | ( | int | i, | |
std::ostream & | os | |||
) | [static] |
Definition at line 1615 of file ParticleName.cc.
References particleName(), and validParticleName().
Referenced by listParticleNames().
01616 { 01617 if ( validParticleName( i ) ) { 01618 std::string pn = particleName( i ); 01619 os << " PDT number: " ; 01620 os.width(12); 01621 os << i << " PDT name: " << pn << std::endl; 01622 01623 } 01624 return; 01625 } // writeParticleNameLine()
int Rivet::PID::Z | ( | const int & | pid | ) |
Definition at line 70 of file ParticleIdUtils.cc.
References abspid(), and isNucleus().
Referenced by ZFinder::project().
00071 { 00072 // a proton can also be a Hydrogen nucleus 00073 if( abspid(pid) == 2212 ) { return 1; } 00074 if( isNucleus(pid) ) return (abspid(pid)/10000)%1000; 00075 return 0; 00076 }