rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

OPAL_2000_I513476

Event Shapes at 172, 183 and 189 GeV
Experiment: OPAL (LEP)
Inspire ID: 513476
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Eur.Phys.J. C16 (2000) 185-210
Beams: e- e+
Beam energies: (86.0, 86.0); (91.5, 91.5); (94.5, 94.5) GeV
Run details:
  • e+e- to hadrons. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Event shapes at 172, 183 and 189 GeV. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: OPAL_2000_I513476.cc
  1// -*- C++ -*-
  2#include "Rivet/Analysis.hh"
  3#include "Rivet/Projections/Beam.hh"
  4#include "Rivet/Projections/FinalState.hh"
  5#include "Rivet/Projections/ChargedFinalState.hh"
  6#include "Rivet/Projections/Sphericity.hh"
  7#include "Rivet/Projections/Thrust.hh"
  8#include "Rivet/Projections/FastJets.hh"
  9#include "Rivet/Projections/ParisiTensor.hh"
 10#include "Rivet/Projections/Hemispheres.hh"
 11
 12namespace Rivet {
 13
 14
 15  /// @brief  event shapes at 172, 183, 189
 16  class OPAL_2000_I513476 : public Analysis {
 17  public:
 18
 19    /// Constructor
 20    RIVET_DEFAULT_ANALYSIS_CTOR(OPAL_2000_I513476);
 21
 22
 23    /// @name Analysis methods
 24    /// @{
 25
 26    /// Book histograms and initialise projections before the run
 27    void init() {
 28
 29      // Initialise and register projections
 30      // Projections
 31      declare(Beam(), "Beams");
 32      const FinalState fs;
 33      declare(fs, "FS");
 34      const ChargedFinalState cfs;
 35      declare(cfs, "CFS");
 36      declare(FastJets(fs, JetAlg::DURHAM, 0.7), "DurhamJets");
 37      declare(Sphericity(fs), "Sphericity");
 38      declare(ParisiTensor(fs), "Parisi");
 39      const Thrust thrust(fs);
 40      declare(thrust, "Thrust");
 41      declare(Hemispheres(thrust), "Hemispheres");
 42
 43      // Book histograms
 44      if (isCompatibleWithSqrtS(172*GeV)) {
 45        ih = 1;
 46      } else if (isCompatibleWithSqrtS(183*GeV)) {
 47        ih = 2;
 48      } else if (isCompatibleWithSqrtS(189*GeV)) {
 49        ih = 3;
 50      }
 51      else {
 52        throw Error("Invalid CMS energy for OPAL_2000_I513476");
 53      }
 54      book(_h_thrust    ,  1,1,ih);
 55      book(_h_major     ,  2,1,ih);
 56      book(_h_minor     ,  3,1,ih);
 57      book(_h_aplanarity,  4,1,ih);
 58      book(_h_oblateness,  5,1,ih);
 59      book(_h_C         ,  6,1,ih);
 60      book(_h_rhoH      ,  7,1,ih);
 61      book(_h_sphericity,  8,1,ih);
 62      book(_h_totalB    ,  9,1,ih);
 63      book(_h_wideB     , 10,1,ih);
 64      book(_h_y23       , 11,1,ih);
 65      book(_h_mult      , 13,1,ih);
 66      book(_h_pTin      , 15,1,ih);
 67      book(_h_pTout     , 16,1,ih);
 68      book(_h_y         , 17,1,ih);
 69      book(_h_x         , 18,1,ih);
 70      book(_h_xi        , 19,1,ih);
 71      book(_sumW,"/TMP/sumW");
 72    }
 73
 74
 75    /// Perform the per-event analysis
 76    void analyze(const Event& event) {
 77      // Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
 78      const FinalState& cfs = apply<FinalState>(event, "CFS");
 79      if (cfs.size() < 2) vetoEvent;
 80
 81      _sumW->fill();
 82
 83      // Get beams and average beam momentum
 84      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
 85      const double meanBeamMom = ( beams.first.p3().mod() +
 86                                   beams.second.p3().mod() ) / 2.0;
 87
 88      // Thrust related
 89      const Thrust& thrust = apply<Thrust>(event, "Thrust");
 90      _h_thrust    ->fill(thrust.thrust()     );
 91      _h_major     ->fill(thrust.thrustMajor());
 92      _h_minor     ->fill(thrust.thrustMinor());
 93      _h_oblateness->fill(thrust.oblateness() );
 94
 95      // Sphericity related
 96      const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
 97      _h_sphericity->fill(sphericity.sphericity());
 98      _h_aplanarity->fill(sphericity.aplanarity());
 99
100      // C parameter
101      const ParisiTensor& parisi = apply<ParisiTensor>(event, "Parisi");
102      _h_C->fill(parisi.C());
103
104      // Hemispheres
105      const Hemispheres& hemi = apply<Hemispheres>(event, "Hemispheres");
106
107      _h_rhoH  ->fill(hemi.scaledMhigh());
108      _h_wideB ->fill(hemi.Bmax());
109      _h_totalB->fill(hemi.Bsum());
110
111      // Jets
112      const FastJets& durjet = apply<FastJets>(event, "DurhamJets");
113      const double y23 = durjet.clusterSeq()->exclusive_ymerge_max(2);
114      _h_y23->fill(y23);
115
116      // charged particles
117      _h_mult->fill(cfs.particles().size());
118      for (const Particle& p : cfs.particles()) {
119        const Vector3 mom3  = p.p3();
120        const double energy = p.E();
121        const double pTinT  = dot(mom3, thrust.thrustMajorAxis());
122        const double pToutT = dot(mom3, thrust.thrustMinorAxis());
123      	_h_pTin ->fill(fabs(pTinT/GeV) );
124      	_h_pTout->fill(fabs(pToutT/GeV));
125        const double momT = dot(thrust.thrustAxis(), mom3);
126        const double rapidityT = 0.5 * std::log((energy + momT) / (energy - momT));
127      	_h_y->fill(fabs(rapidityT));
128        const double mom = mom3.mod();
129        const double scaledMom = mom/meanBeamMom;
130        const double logInvScaledMom = -std::log(scaledMom);
131        _h_xi->fill(logInvScaledMom);
132        _h_x ->fill(scaledMom      );
133      }
134    }
135
136
137    /// Normalise histograms etc., after the run
138    void finalize() {
139      scale(_h_thrust    ,1./ *_sumW);
140      scale(_h_major     ,1./ *_sumW);
141      scale(_h_minor     ,1./ *_sumW);
142      scale(_h_aplanarity,1./ *_sumW);
143      scale(_h_oblateness,1./ *_sumW);
144      scale(_h_C         ,1./ *_sumW);
145      scale(_h_rhoH      ,1./ *_sumW);
146      scale(_h_sphericity,1./ *_sumW);
147      scale(_h_totalB    ,1./ *_sumW);
148      scale(_h_wideB     ,1./ *_sumW);
149      scale(_h_y23       ,1./ *_sumW);
150      scale(_h_mult      ,200./ *_sumW);
151      scale(_h_pTin      ,1./ *_sumW);
152      scale(_h_pTout     ,1./ *_sumW);
153      scale(_h_y         ,1./ *_sumW);
154      scale(_h_x         ,1./ *_sumW);
155      scale(_h_xi        ,1./ *_sumW);
156      // mean multiplicity
157      const double nch     = _h_mult->xMean();
158      const double nch_err = _h_mult->xStdErr();
159      BinnedEstimatePtr<int> m_ch;
160      book(m_ch,14,1,1);
161      m_ch->bin(ih).set(nch, nch_err);
162      // mean ptIn
163      double pTin     = _h_pTin->xMean();
164      double pTin_err = _h_pTin->xStdErr();
165      BinnedEstimatePtr<int> m_pTin;
166      book(m_pTin,20,1,1);
167      m_pTin->bin(ih).set(pTin, pTin_err);
168      // mean ptOut
169      double pTout     = _h_pTout->xMean();
170      double pTout_err = _h_pTout->xStdErr();
171      BinnedEstimatePtr<int> m_pTout;
172      book(m_pTout,20,1,2);
173      m_pTout->bin(ih).set(pTout, pTout_err);
174      // mean y
175      double y     = _h_y->xMean();
176      double y_err = _h_y->xStdErr();
177      BinnedEstimatePtr<int> m_y;
178      book(m_y,20,1,3);
179      m_y->bin(ih).set(y, y_err);
180      // mean x
181      double x     = _h_x->xMean();
182      double x_err = _h_x->xStdErr();
183      BinnedEstimatePtr<int> m_x;
184      book(m_x,20,1,4);
185      m_x->bin(ih).set(x, x_err);
186    }
187
188    /// @}
189
190
191    /// @name Histograms
192    /// @{
193    Histo1DPtr _h_thrust,_h_major,_h_minor,_h_aplanarity,_h_oblateness,_h_C,_h_rhoH,_h_sphericity;
194    Histo1DPtr _h_totalB,_h_wideB,_h_y23,_h_pTin,_h_pTout,_h_y,_h_x,_h_xi;
195    BinnedHistoPtr<int> _h_mult;
196    CounterPtr _sumW;
197    size_t ih = -1;
198    /// @}
199
200
201  };
202
203
204  RIVET_DECLARE_PLUGIN(OPAL_2000_I513476);
205
206
207}