rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

MC_LEADJETUE

Underlying event in leading jet events, extended to LHC
Experiment: ()
Status: VALIDATED
Authors:
  • Andy Buckley
No references listed
Beams: * *
Beam energies: ANY
Run details:
  • LHC pp QCD interactions at 0.9, 10 or 14 TeV. Particles with $c \tau > 10$ mm should be set stable. Several $p_\perp^\text{min}$ cutoffs are probably required to fill the profile histograms.

Rick Field's measurement of the underlying event in leading jet events, extended to the LHC. As usual, the leading jet of the defines an azimuthal toward/transverse/away decomposition, in this case the event is accepted within $|\eta| < 2$, as in the CDF 2008 version of the analysis. Since this isn't the Tevatron, I've chosen to use $k_\perp$ rather than midpoint jets.

Source code: MC_LEADJETUE.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {

  


  /// @brief MC validation analysis for underlying event in jet events
  /// @author Andy Buckley
  class MC_LEADJETUE : public Analysis {
  public:

    /// Constructor
    MC_LEADJETUE()
      : Analysis("MC_LEADJETUE")
    {    }


    /// @name Analysis methods
    //@{

    // Book histograms
    void init() {
      // Final state for the jet finding
      const FinalState fsj(-4.0, 4.0, 0.0*GeV);
      declare(fsj, "FSJ");
      declare(FastJets(fsj, FastJets::KT, 0.7), "Jets");

      // Charged final state for the distributions
      const ChargedFinalState cfs(-1.0, 1.0, 0.5*GeV);
      declare(cfs, "CFS");

      const double maxpt1 = 500.0;
      _hist_pnchg      = bookProfile1D("trans-nchg", 50, 0.0, maxpt1);
      _hist_pmaxnchg   = bookProfile1D("trans-maxnchg", 50, 0.0, maxpt1);
      _hist_pminnchg   = bookProfile1D("trans-minnchg", 50, 0.0, maxpt1);
      _hist_pcptsum    = bookProfile1D("trans-ptsum", 50, 0.0, maxpt1);
      _hist_pmaxcptsum = bookProfile1D("trans-maxptsum", 50, 0.0, maxpt1);
      _hist_pmincptsum = bookProfile1D("trans-minptsum", 50, 0.0, maxpt1);
      _hist_pcptave    = bookProfile1D("trans-ptavg", 50, 0.0, maxpt1);
    }


    // Do the analysis
    void analyze(const Event& e) {

      const FinalState& fsj = apply<FinalState>(e, "FSJ");
      if (fsj.particles().empty()) {
        MSG_DEBUG("Failed multiplicity cut");
        vetoEvent;
      }

      const FastJets& jetpro = apply<FastJets>(e, "Jets");
      const Jets jets = jetpro.jetsByPt();
      MSG_DEBUG("Jet multiplicity = " << jets.size());

      // Require the leading jet to be within |eta| < 2
      if (jets.size() < 1 || fabs(jets[0].eta()) > 2) {
        MSG_DEBUG("Failed jet cut");
        vetoEvent;
      }

      const double jetphi = jets[0].phi();
      const double jetpT  = jets[0].pT();
      MSG_DEBUG("Leading jet: pT = " << jetpT/GeV << " GeV"
                << ", eta = " << jets[0].eta()
                << ", phi = " << jetphi);

      // Get the event weight
      const double weight = e.weight();

      // Get the final states to work with for filling the distributions
      const FinalState& cfs = apply<ChargedFinalState>(e, "CFS");

      size_t   numOverall(0),     numToward(0),     numTrans1(0),     numTrans2(0),     numAway(0);
      double ptSumOverall(0.0), ptSumToward(0.0), ptSumTrans1(0.0), ptSumTrans2(0.0), ptSumAway(0.0);
      double ptMaxOverall(0.0), ptMaxToward(0.0), ptMaxTrans1(0.0), ptMaxTrans2(0.0), ptMaxAway(0.0);

      // Calculate all the charged stuff
      foreach (const Particle& p, cfs.particles()) {
        const double dPhi = deltaPhi(p.phi(), jetphi);
        const double pT = p.pT();
        const double phi = p.phi();
        const double rotatedphi = phi - jetphi;

        ptSumOverall += pT;
        ++numOverall;
        if (pT > ptMaxOverall) ptMaxOverall = pT;

        if (dPhi < PI/3.0) {
          ptSumToward += pT;
          ++numToward;
          if (pT > ptMaxToward) ptMaxToward = pT;
        }
        else if (dPhi < 2*PI/3.0) {
          if (rotatedphi <= PI) {
            ptSumTrans1 += pT;
            ++numTrans1;
            if (pT > ptMaxTrans1) ptMaxTrans1 = pT;
          } else {
            ptSumTrans2 += pT;
            ++numTrans2;
            if (pT > ptMaxTrans2) ptMaxTrans2 = pT;
          }
        }
        else {
          ptSumAway += pT;
          ++numAway;
          if (pT > ptMaxAway) ptMaxAway = pT;
        }
      }


      // Fill the histograms
      //_hist_tnchg->fill(jetpT/GeV, numToward/(4*PI/3), weight);
      _hist_pnchg->fill(jetpT/GeV, (numTrans1+numTrans2)/(4*PI/3), weight);
      _hist_pmaxnchg->fill(jetpT/GeV, (numTrans1>numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight);
      _hist_pminnchg->fill(jetpT/GeV, (numTrans1<numTrans2 ? numTrans1 : numTrans2)/(2*PI/3), weight);
      //_hist_pdifnchg->fill(jetpT/GeV, abs(numTrans1-numTrans2)/(2*PI/3), weight);
      //_hist_anchg->fill(jetpT/GeV, numAway/(4*PI/3), weight);

      //_hist_tcptsum->fill(jetpT/GeV, ptSumToward/GeV/(4*PI/3), weight);
      _hist_pcptsum->fill(jetpT/GeV, (ptSumTrans1+ptSumTrans2)/GeV/(4*PI/3), weight);
      _hist_pmaxcptsum->fill(jetpT/GeV, (ptSumTrans1>ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/GeV/(2*PI/3), weight);
      _hist_pmincptsum->fill(jetpT/GeV, (ptSumTrans1<ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/GeV/(2*PI/3), weight);
      //_hist_pdifcptsum->fill(jetpT/GeV, fabs(ptSumTrans1-ptSumTrans2)/GeV/(2*PI/3), weight);
      //_hist_acptsum->fill(jetpT/GeV, ptSumAway/GeV/(4*PI/3), weight);

      //if (numToward > 0) {
      //  _hist_tcptave->fill(jetpT/GeV, ptSumToward/GeV/numToward, weight);
      //  _hist_tcptmax->fill(jetpT/GeV, ptMaxToward/GeV, weight);
      //}
      if ((numTrans1+numTrans2) > 0) {
        _hist_pcptave->fill(jetpT/GeV, (ptSumTrans1+ptSumTrans2)/GeV/(numTrans1+numTrans2), weight);
        //_hist_pcptmax->fill(jetpT/GeV, (ptMaxTrans1 > ptMaxTrans2 ? ptMaxTrans1 : ptMaxTrans2)/GeV, weight);
      }
      //if (numAway > 0) {
      //  _hist_acptave->fill(jetpT/GeV, ptSumAway/GeV/numAway, weight);
      //  _hist_acptmax->fill(jetpT/GeV, ptMaxAway/GeV, weight);
      //}
    }


    void finalize() {
      //
    }


  private:

    Profile1DPtr _hist_pnchg;
    Profile1DPtr _hist_pmaxnchg;
    Profile1DPtr _hist_pminnchg;
    Profile1DPtr _hist_pcptsum;
    Profile1DPtr _hist_pmaxcptsum;
    Profile1DPtr _hist_pmincptsum;
    Profile1DPtr _hist_pcptave;

  };



  // The hook for the plugin system
  DECLARE_RIVET_PLUGIN(MC_LEADJETUE);

}