1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/PrimaryHadrons.hh"
#include "Rivet/Projections/HeavyHadrons.hh"
namespace Rivet {
class MC_HFJETS : public Analysis {
public:
// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(MC_HFJETS);
/// Book histograms and initialise projections before the run
void init() {
// set clustering radius from input option
const double R = getOption<double>("R", 0.6);
// set clustering algorithm from input option
FastJets::Algo clusterAlgo;
const string algoopt = getOption("ALGO", "ANTIKT");
if ( algoopt == "KT" ) {
clusterAlgo = FastJets::KT;
} else if ( algoopt == "CA" ) {
clusterAlgo = FastJets::CA;
} else if ( algoopt == "ANTIKT" ) {
clusterAlgo = FastJets::ANTIKT;
} else {
MSG_WARNING("Unknown jet clustering algorithm option " + algoopt + ". "
"Defaulting to anti-kT");
clusterAlgo = FastJets::ANTIKT;
}
FastJets fj(FinalState(Cuts::abseta < 5), clusterAlgo, R);
fj.useInvisibles();
declare(fj, "Jets");
declare(HeavyHadrons(Cuts::abseta < 5 && Cuts::pT > 500*MeV), "BCHadrons");
book(_h_ptCJetLead ,"ptCJetLead", linspace(5, 0, 20, false) + logspace(25, 20, 200));
book(_h_ptCHadrLead ,"ptCHadrLead", linspace(5, 0, 10, false) + logspace(25, 10, 200));
book(_h_ptFracC ,"ptfracC", 50, 0, 1.5);
book(_h_eFracC ,"efracC", 50, 0, 1.5);
book(_h_ptBJetLead ,"ptBJetLead", linspace(5, 0, 20, false) + logspace(25, 20, 200));
book(_h_ptBHadrLead ,"ptBHadrLead", linspace(5, 0, 10, false) + logspace(25, 10, 200));
book(_h_ptFracB ,"ptfracB", 50, 0, 1.5);
book(_h_eFracB ,"efracB", 50, 0, 1.5);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Get jets and heavy hadrons
const Jets& jets = apply<JetAlg>(event, "Jets").jetsByPt();
const Particles bhadrons = sortByPt(apply<HeavyHadrons>(event, "BCHadrons").bHadrons());
const Particles chadrons = sortByPt(apply<HeavyHadrons>(event, "BCHadrons").cHadrons());
MSG_DEBUG("# b hadrons = " << bhadrons.size() << ", # c hadrons = " << chadrons.size());
// Loop over jets and use ghost-tag info
for (const Jet& j : jets) {
bool gotLeadingB = false, gotLeadingC = false;
// b-tag testing
if (!gotLeadingB && j.bTagged(Cuts::pT > 500*MeV)) {
gotLeadingB = true;
Particle bhad = sortByPt(j.bTags(Cuts::pT > 500*MeV))[0];
_h_ptBJetLead->fill(j.pT()/GeV);
_h_ptBHadrLead->fill(bhad.pT()/GeV);
_h_ptFracB->fill(bhad.pT() / j.pT());
_h_eFracB->fill(bhad.E() / j.E());
continue;
}
// c-tag testing
if (!gotLeadingC && j.cTagged(Cuts::pT > 500*MeV) && !j.bTagged(Cuts::pT > 500*MeV)) {
gotLeadingC = true;
Particle chad = sortByPt(j.cTags(Cuts::pT > 500*MeV))[0];
_h_ptCJetLead->fill(j.pT()/GeV);
_h_ptCHadrLead->fill(chad.pT()/GeV);
_h_ptFracC->fill(chad.pT() / j.pT());
_h_eFracC->fill(chad.E() / j.E());
}
// Escape early if we've found both the leading b and c jets
if (gotLeadingB && gotLeadingC) break;
}
// // Tag the leading b and c jets with a deltaR < 0.3 match
// // b-tagged jet are excluded from also being considered as c-tagged
// MSG_DEBUG("Getting b/c-tags");
// const double MAX_DR = 0.3;
// bool gotLeadingB = false, gotLeadingC = false;
// for (const Jet& j : jets) {
// if (!gotLeadingB) {
// FourMomentum leadBJet, leadBHadr;
// double dRmin = MAX_DR;
// for (const Particle& b : bhadrons) {
// const double dRcand = min(dRmin, deltaR(j, b));
// if (dRcand < dRmin) {
// dRmin = dRcand;
// leadBJet = j.momentum();
// leadBHadr = b.momentum();
// MSG_DEBUG("New closest b-hadron jet tag candidate: dR = " << dRmin
// << " for jet pT = " << j.pT()/GeV << " GeV, "
// << " b hadron pT = " << b.pT()/GeV << " GeV, PID = " << b.pid());
// }
// }
// if (dRmin < MAX_DR) {
// // A jet has been tagged, so fill the histos and break the loop
// _h_ptBJetLead->fill(leadBJet.pT()/GeV, weight);
// _h_ptBHadrLead->fill(leadBHadr.pT()/GeV, weight);
// _h_ptFracB->fill(leadBHadr.pT() / leadBJet.pT(), weight);
// _h_eFracB->fill(leadBHadr.E() / leadBJet.E(), weight);
// gotLeadingB = true;
// continue; // escape this loop iteration so the same jet isn't c-tagged
// }
// }
// if (!gotLeadingC) {
// FourMomentum leadCJet, leadCHadr;
// double dRmin = MAX_DR;
// for (const Particle& c : chadrons) {
// const double dRcand = min(dRmin, deltaR(j, c));
// if (dRcand < dRmin) {
// dRmin = dRcand;
// leadCJet = j.momentum();
// leadCHadr = c.momentum();
// MSG_DEBUG("New closest c-hadron jet tag candidate: dR = " << dRmin
// << " for jet pT = " << j.pT()/GeV << " GeV, "
// << " c hadron pT = " << c.pT()/GeV << " GeV, PID = " << c.pid());
// }
// }
// if (dRmin < MAX_DR) {
// // A jet has been tagged, so fill the histos and break the loop
// _h_ptCJetLead->fill(leadCJet.pT()/GeV, weight);
// _h_ptCHadrLead->fill(leadCHadr.pT()/GeV, weight);
// _h_ptFracC->fill(leadCHadr.pT() / leadCJet.pT(), weight);
// _h_eFracC->fill(leadCHadr.E() / leadCJet.E(), weight);
// gotLeadingB = true;
// }
// }
// // If we've found both a leading b and a leading c jet, break the loop over jets
// if (gotLeadingB && gotLeadingC) break;
// }
}
/// Normalise histograms etc., after the run
void finalize() {
normalize({_h_ptCJetLead, _h_ptCHadrLead, _h_ptBJetLead, _h_ptBHadrLead,
_h_ptFracC, _h_eFracC, _h_ptFracB, _h_eFracB});
}
/// @name Histograms
///@{
Histo1DPtr _h_ptCJetLead, _h_ptCHadrLead, _h_ptFracC, _h_eFracC;
Histo1DPtr _h_ptBJetLead, _h_ptBHadrLead, _h_ptFracB, _h_eFracB;
///@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(MC_HFJETS);
}
|