rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

LHCB_2016_I1394391

Dalitz plot analysis of $D^0\to K^0_SK^\pm\pi^\mp$
Experiment: LHCB (LHC)
Inspire ID: 1394391
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 93 (2016) 5, 052018
Beams: * *
Beam energies: ANY
    No run details listed

Measurement of Kinematic distributions in the decays $D^0\to K^0_SK^\pm\pi^\mp$. The data were extracted from the plots in the paper. Resolution/acceptance effects have been not unfolded but an efficiency function base on Fig 4 of the paper is applied. Given the agreement with the model in the paper this analysis should only be used for qualitative studies.

Source code: LHCB_2016_I1394391.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief  D0 -> KS) K+/- pi-/+
  class LHCB_2016_I1394391 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(LHCB_2016_I1394391);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==421);
      declare(ufs, "UFS");
      DecayedParticles D0(ufs);
      D0.addStable(PID::PI0);
      D0.addStable(PID::K0S);
      D0.addStable(PID::ETA);
      D0.addStable(PID::ETAPRIME);
      declare(D0, "D0");
      // histograms
      book(_h_Kmpip,1,1,1);
      book(_h_K0pip,1,1,2);
      book(_h_K0Km ,1,1,3);
      book(_h_Kppim,2,1,1);
      book(_h_K0pim,2,1,2);
      book(_h_K0Kp ,2,1,3);
      book(_dalitz [0],"dalitz_1",50,0.3,2.0,50,0.3,2.);
      book(_dalitz [1],"dalitz_2",50,0.3,2.0,50,0.3,2.);
    }

    double efficiency(const double & x, const double &y) {
      double X=x-2., Y=y-1.;
      static const double E0 = 5.8096, Ex = -3.645, Ey = -3.174, Ex2=  0.831,
	Exy = 2.131, Ey2 = 4.43, Ex3 = -0.427, Ex2y = 2.65, Exy2 = 1.50, Ey3 = -3.92;
      return E0 + Ex*X + Ey*Y + Ex2*sqr(X) + Ey2*sqr(Y) + Exy*X*Y +
	Ex3*pow(X,3) + Ex2y*sqr(X)*Y + Exy2*X*sqr(Y) + Ey3*pow(Y,3);
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      static const map<PdgId,unsigned int> & mode   = { { 321,1},{-211,1}, { 310,1}};
      static const map<PdgId,unsigned int> & modeCC = { {-321,1},{ 211,1}, { 310,1}};
      DecayedParticles D0 = apply<DecayedParticles>(event, "D0");
      // loop over particles
      for(unsigned int ix=0;ix<D0.decaying().size();++ix) {
	if( !D0.modeMatches(ix,3,mode  ) &&
	    !D0.modeMatches(ix,3,modeCC) ) continue;
	const Particles & K0 = D0.decayProducts()[ix].at(310);
	int sign = D0.decaying()[ix].pid()/421;
	const Particles & pip= D0.decayProducts()[ix].find( sign*211) == D0.decayProducts()[ix].end() ?
	  Particles() : D0.decayProducts()[ix].at( sign*211);
	const Particles & pim= D0.decayProducts()[ix].find(-sign*211) == D0.decayProducts()[ix].end() ?
	  Particles() : D0.decayProducts()[ix].at(-sign*211);
	const Particles & Kp = D0.decayProducts()[ix].find( sign*321) == D0.decayProducts()[ix].end() ?
	  Particles() : D0.decayProducts()[ix].at( sign*321);
	const Particles & Km = D0.decayProducts()[ix].find(-sign*321) == D0.decayProducts()[ix].end() ?
	  Particles() : D0.decayProducts()[ix].at(-sign*321);
	// K0S K- pi+
	if( Km.size()==1 && pip.size()==1) {
	  double mK0pip = (K0[0].momentum()+pip[0].momentum() ).mass2();
	  double mKmpip = (Km[0].momentum()+pip[0].momentum() ).mass2();
	  double mKK    = (K0[0].momentum()+Km [0].momentum() ).mass2();
	  double eff = efficiency(mKK,mK0pip);
	  _h_K0Km ->fill(mKK   ,eff);
	  _h_K0pip->fill(mK0pip,eff);
	  _h_Kmpip->fill(mKmpip,eff);
	  _dalitz[0]->fill(mKmpip,mK0pip); 
	}
	// K0S K+ pi-
	else if( Kp.size()==1 && pim.size()==1) {
	  double mK0pim = (K0[0].momentum()+pim[0].momentum() ).mass2();
	  double mKppim = (Kp[0].momentum()+pim[0].momentum() ).mass2();
	  double mKK    = (K0[0].momentum()+Kp [0].momentum() ).mass2();
	  double eff = efficiency(mKK,mK0pim);
	  _h_K0Kp ->fill(mKK   ,eff);
	  _h_K0pim->fill(mK0pim,eff);
	  _h_Kppim->fill(mKppim,eff);
	  _dalitz[1]->fill(mKppim,mK0pim); 
	}
      }
    }


    /// Normalise histograms etc., after the runbook
    void finalize() {
      normalize(_h_Kmpip);
      normalize(_h_K0pip);
      normalize(_h_K0Km );
      normalize(_h_Kppim);
      normalize(_h_K0pim);
      normalize(_h_K0Kp );
      normalize(_dalitz [0]);
      normalize(_dalitz [1]);
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h_Kmpip, _h_K0pip, _h_K0Km;
    Histo1DPtr _h_Kppim, _h_K0pim, _h_K0Kp;
    Histo2DPtr _dalitz[2];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(LHCB_2016_I1394391);

}