|
Rivet analyses reference
CMS_2022_I2079374
Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell--Yan production in proton-proton collisions at 13 TeV
Experiment: CMS (LHC)
Inspire ID: 2079374
Status: VALIDATED
Authors:
- cms-pag-conveners-smp@cern.ch
- Louis Moureaux
- Buğra Bilin
- Itana Bubanja
- Philippe Gras
References:
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
- Run MC generators with Z decaying leptonically into both electrons and muons at 13 TeV CoM energy. If only one of the two decay channels is included, set LMODE accordingly.
The double differential cross sections of the Drell-Yan lepton pair ($\ell^+\ell^-$, dielectron or dimuon) production are measured, as functions of the invariant mass $m_{\ell\ell}$, transverse momentum $p_T^{\ell\ell}$, and $\varphi^*_\eta$. The $\varphi^*_\eta$ observable, derived from angular measurements of the leptons and highly correlated with $p_T^{\ell\ell}$, is used to probe the low-$p_T^{\ell\ell}$ region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various $m_{\ell\ell}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb$^{-1}$ of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
Source code:
CMS_2022_I2079374.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/DressedLeptons.hh"
#include "Rivet/Projections/PromptFinalState.hh"
namespace Rivet {
/// @brief Z pT over a wide mass range
class CMS_2022_I2079374 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2022_I2079374);
/// Book histograms and initialise projections before the run
void init() {
// Get options from the new option system
// default to combined.
_mode = 2;
if (getOption("LMODE") == "EL") {
_mode = 0;
} else if (getOption("LMODE") == "MU") {
_mode = 1;
} else if (getOption("LMODE") == "EMU") {
_mode = 2;
} else {
MSG_INFO("Assuming a mixed electron/muon sample. Set LMODE=EL/MU if your sample contains a single flavor.");
}
FinalState fs;
PromptFinalState pfs(fs);
PromptFinalState bareMuons(Cuts::abspid == PID::MUON);
declare(DressedLeptons(pfs, bareMuons, 0.1, Cuts::abseta < 2.4 && Cuts::pT > 20*GeV, true),
"muons");
PromptFinalState bareElectrons(Cuts::abspid == PID::ELECTRON);
declare(DressedLeptons(pfs, bareElectrons, 0.1, Cuts::abseta < 2.4 && Cuts::pT > 20*GeV, true),
"electrons");
FastJets jets(fs, FastJets::ANTIKT, 0.4);
declare(jets, "jets");
// Histograms
book(_pt_0jet_mass50_76, 1, 1, 1);
book(_pt_0jet_mass76_106, 3, 1, 1);
book(_pt_0jet_mass106_170, 5, 1, 1);
book(_pt_0jet_mass170_350, 7, 1, 1);
book(_pt_0jet_mass350_1000, 9, 1, 1);
book(_pt_1jet_mass50_76, 11, 1, 1);
book(_pt_1jet_mass76_106, 13, 1, 1);
book(_pt_1jet_mass106_170, 15, 1, 1);
book(_pt_1jet_mass170_350, 17, 1, 1);
book(_phistar_mass50_76, 19, 1, 1);
book(_phistar_mass76_106, 21, 1, 1);
book(_phistar_mass106_170, 23, 1, 1);
book(_phistar_mass170_350, 25, 1, 1);
book(_phistar_mass350_1000, 27, 1, 1);
}
/// Z boson finder.
/// Note: we don't use the standard ZFinder class in order to stick to
/// the definition of the publication that is simpler than the ZFinder
/// algorithm
/// @param leptons pt-ordered of electron or muon collection to use to build
/// the Z boson
std::unique_ptr<Particle> zfinder(const std::vector<DressedLepton> &leptons)
{
if (leptons.size() < 2) {
return nullptr;
}
// Leading lepton pT cut
if (leptons[0].pT() < 25.*GeV) {
return nullptr;
}
if (leptons[0].charge() * leptons[1].charge() > 0) {
return nullptr;
}
std::unique_ptr<Particle> candidate(new Particle(PID::ZBOSON, leptons[0].mom() + leptons[1].mom()));
if (candidate->mass() < 50*GeV || candidate->mass() > 1000*GeV) {
return nullptr;
}
return candidate;
}
/// Perform the per-event analysis
void analyze(const Event& event)
{
// Fetch dressed leptons
auto muons = apply<DressedLeptons>(event, "muons").dressedLeptons();
auto electrons = apply<DressedLeptons>(event, "electrons").dressedLeptons();
const std::vector<DressedLepton> *dressedLeptons = nullptr;
//Look for Z->ee
std::unique_ptr<Particle> z = zfinder(electrons);
if (z != nullptr) {
dressedLeptons = &electrons;
if (_mode == 1) {
// Z->ee found, but running with LMODE=MU
vetoEvent;
}
} else if (_mode == 0) {
// LMODE=EL, but no Z->ee found
vetoEvent;
} else { //look for Z->mumu
z = zfinder(muons);
if (z.get() != nullptr) {
dressedLeptons = &muons;
} else { //no Z boson found
vetoEvent;
}
}
// Cluster jets
Jets jets = apply<FastJets>(event, "jets").jetsByPt(Cuts::absrap < 2.4 && Cuts::pT > 30*GeV);
idiscardIfAnyDeltaRLess(jets, *dressedLeptons, 0.4);
//------------------------------------------------
// Compute phi*
const Particle& lminus = dressedLeptons->at(0).charge() < 0 ? dressedLeptons->at(0) : dressedLeptons->at(1);
const Particle& lplus = dressedLeptons->at(0).charge() < 0 ? dressedLeptons->at(1) : dressedLeptons->at(0);
double phi_acop = M_PI - deltaPhi(lminus, lplus);
double costhetastar = tanh( 0.5 * (lminus.eta() - lplus.eta()) );
double sin2thetastar = (costhetastar > 1) ? 0.0 : (1.0 - sqr(costhetastar));
double phistar = tan(0.5 * phi_acop) * sqrt(sin2thetastar);
if (z->mass() > 50. && z->mass() < 76.) {
_pt_0jet_mass50_76->fill(z->pT());
_phistar_mass50_76->fill(phistar);
} else if (z->mass() > 76. && z->mass() < 106.) {
_pt_0jet_mass76_106->fill(z->pT());
_phistar_mass76_106->fill(phistar);
} else if (z->mass() > 106. && z->mass() < 170.) {
_pt_0jet_mass106_170->fill(z->pT());
_phistar_mass106_170->fill(phistar);
} else if (z->mass() > 170. && z->mass() < 350.) {
_pt_0jet_mass170_350->fill(z->pT());
_phistar_mass170_350->fill(phistar);
} else if (z->mass() > 350. && z->mass() < 1000.) {
_pt_0jet_mass350_1000->fill(z->pT());
_phistar_mass350_1000->fill(phistar);
}
//---------------------- at least one jet --------------------------------
if (jets.size() < 1) {
return;
}
if (z->mass() > 50. && z->mass() < 76.) {
_pt_1jet_mass50_76->fill(z->pT());
} else if (z->mass() > 76. && z->mass() < 106.) {
_pt_1jet_mass76_106->fill(z->pT());
} else if (z->mass() > 106. && z->mass() < 170.) {
_pt_1jet_mass106_170->fill(z->pT());
} else if (z->mass() > 170. && z->mass() < 350.) {
_pt_1jet_mass170_350->fill(z->pT());
}
}
/// Calculates the ratio between two histograms
void calculateRatio(int d, const Histo1DPtr &numerator, const Histo1DPtr &denominator) {
Scatter2DPtr ratio;
book(ratio, d, 1, 1, true);
// Should be the case, but better check
assert(YODA::Histo1D(*ratio).sameBinning(*numerator));
// The denominator has a finer binning, so rebin it
auto rebinned_den = denominator->clone();
rebinned_den.rebin(numerator->xEdges());
divide(*numerator, rebinned_den, ratio);
}
/// Normalise histograms etc., after the run
void finalize() {
double norm = (sumOfWeights() != 0) ? crossSection()/sumOfWeights() : 1.0;
if (_mode == 2) {
norm /= 2.;
}
scale(_pt_0jet_mass50_76, norm);
scale(_pt_0jet_mass76_106, norm);
scale(_pt_0jet_mass106_170, norm);
scale(_pt_0jet_mass170_350, norm);
scale(_pt_0jet_mass350_1000, norm);
scale(_pt_1jet_mass50_76, norm);
scale(_pt_1jet_mass76_106, norm);
scale(_pt_1jet_mass106_170, norm);
scale(_pt_1jet_mass170_350, norm);
scale(_phistar_mass50_76, norm);
scale(_phistar_mass76_106, norm);
scale(_phistar_mass106_170, norm);
scale(_phistar_mass170_350, norm);
scale(_phistar_mass350_1000, norm);
// Calculate the ratios
calculateRatio(29, _pt_0jet_mass50_76, _pt_0jet_mass76_106);
calculateRatio(31, _pt_0jet_mass106_170, _pt_0jet_mass76_106);
calculateRatio(33, _pt_0jet_mass170_350, _pt_0jet_mass76_106);
calculateRatio(35, _pt_0jet_mass350_1000, _pt_0jet_mass76_106);
calculateRatio(37, _pt_1jet_mass50_76, _pt_1jet_mass76_106);
calculateRatio(39, _pt_1jet_mass106_170, _pt_1jet_mass76_106);
calculateRatio(41, _pt_1jet_mass170_350, _pt_1jet_mass76_106);
calculateRatio(43, _phistar_mass50_76, _phistar_mass76_106);
calculateRatio(45, _phistar_mass106_170, _phistar_mass76_106);
calculateRatio(47, _phistar_mass170_350, _phistar_mass76_106);
calculateRatio(49, _phistar_mass350_1000, _phistar_mass76_106);
}
protected:
size_t _mode;
private:
/// @name Histograms
Histo1DPtr _pt_0jet_mass50_76,
_pt_0jet_mass76_106,
_pt_0jet_mass106_170,
_pt_0jet_mass170_350,
_pt_0jet_mass350_1000;
Histo1DPtr _pt_1jet_mass50_76,
_pt_1jet_mass76_106,
_pt_1jet_mass106_170,
_pt_1jet_mass170_350;
Histo1DPtr _phistar_mass50_76,
_phistar_mass76_106,
_phistar_mass106_170,
_phistar_mass170_350,
_phistar_mass350_1000;
};
RIVET_DECLARE_PLUGIN(CMS_2022_I2079374);
}
|
|