rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

CMS_2018_I1680318

Charged particle distributions in different final states at 13 TeV
Experiment: CMS collaboration (LHC)
Inspire ID: 1680318
Status: VALIDATED
Authors:
  • cms-pag-conveners-smp@cern.ch
  • Juan Manuel Grados Luyando
  • Pieters Maxim
References:
  • Eur.Phys.J. C78 (2018) no.9, 697
  • DOI: 10.1140/epjc/s10052-018-6144-y
  • arXiv: 1806.11245
  • http://cms-results.web.cern.ch/cms-results/public-results/publications/FSQ-16-011/
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • Inelastic events at 13 TeV centre of mass energy. Tracks in $|\eta|<2.4$ and with $p_\perp > 0.5 GeV$

Charged particle distributions in different final states at $\sqrt{s} = 13$ TeV by the CMS experiment. Pseudorapidity, multiplicity and transverse momentum distributions of all charged particles. Also the $p_\perp$ leading charged particle spectrum and its integration as function of $p_\perp$. The distributions are presented for inelastic, non-single-diffractive and single-diffractive event selections. Please note, that the MC predictions are not scaled to the datapoints, in contrast to Figure 6 in the publication.

Source code: CMS_2018_I1680318.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"

namespace Rivet {


  class CMS_2018_I1680318 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(CMS_2018_I1680318);


    /// Book histograms and initialise projections before the run
    void init() {

      // Cuts
      MinEnergy     = 5.0; // Particle's energy cut in the forward region [GeV]
      EtaForwardMin = 3.0;
      EtaForwardMax = 5.0;
      EtaCentralCut = 2.4;
      MinParticlePt = 0.5; // [GeV]


      // Initialise and register projections
      const FinalState fsa(Cuts::abseta < EtaForwardMax);
      declare(fsa, "FSA");

      const ChargedFinalState cfs(Cuts::abseta < EtaCentralCut && Cuts::pT > MinParticlePt*GeV);
      declare(cfs, "CFS");


      // Histograms
      book(_hist_dNch_all_dEta_OR,          1,1,1);
      book(_hist_dNch_all_dEta_AND,         1,2,1);
      book(_hist_dNch_all_dEta_XOR,         1,3,1);
      book(_hist_dNch_all_dEta_XORpm,       1,4,1);

      book(_hist_dNch_all_dpt_OR,           2,1,1);
      book(_hist_dNch_all_dpt_AND,          2,2,1);
      book(_hist_dNch_all_dpt_XOR,          2,3,1);

      book(_hist_dNch_leading_dpt_OR,       3,1,1);
      book(_hist_dNch_leading_dpt_AND,      3,2,1);
      book(_hist_dNch_leading_dpt_XOR,      3,3,1);

      book(_hist_integrated_leading_pt_OR,  4,1,1);
      book(_hist_integrated_leading_pt_AND, 4,2,1);
      book(_hist_integrated_leading_pt_XOR, 4,3,1);

      book(_hist_dNev_all_dM_OR,            5,1,1);
      book(_hist_dNev_all_dM_AND,           5,2,1);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      const ChargedFinalState& charged = apply<ChargedFinalState>(event, "CFS");
      const FinalState& fsa = apply<FinalState>(event, "FSA");

      bool activity_plus_side  = false,
        activity_minus_side = false;

      for (const Particle& p : fsa.particles()) {
        if ( p.energy() >= MinEnergy ) {
          if ( inRange(p.eta(),      EtaForwardMin,      EtaForwardMax) ) activity_plus_side  = true;
          if ( inRange(p.eta(), -1.0*EtaForwardMax, -1.0*EtaForwardMin) ) activity_minus_side = true;
        }

        // If activity already found in both sides,
        // then there is no point in keep going the loop
        if (activity_plus_side && activity_minus_side) break;
      }

      // Event selections
      const bool cutsor   = ( activity_plus_side ||  activity_minus_side);
      const bool cutsand  = ( activity_plus_side &&  activity_minus_side);
      const bool cutsxor  = ((activity_plus_side && !activity_minus_side) || (!activity_plus_side && activity_minus_side));
      const bool cutsxorm = (!activity_plus_side &&  activity_minus_side);
      const bool cutsxorp = ( activity_plus_side && !activity_minus_side);

      // Loop over charged particles
      double leading_pt = 0;
      for (const Particle& p : charged.particles()) {
        // Find the leading-pt particle of the event
        if (p.pT() > leading_pt) leading_pt = p.pT();

        // Filling histograms
        if (cutsor)   _hist_dNch_all_dEta_OR    -> fill(p.eta());
        if (cutsand)  _hist_dNch_all_dEta_AND   -> fill(p.eta());
        if (cutsxor)  _hist_dNch_all_dEta_XOR   -> fill(p.eta());

        //Average xorm & xorp
        if (cutsxorm) _hist_dNch_all_dEta_XORpm -> fill(p.eta());
        if (cutsxorp) _hist_dNch_all_dEta_XORpm -> fill(-1.0*p.eta());

        if (cutsor)   _hist_dNch_all_dpt_OR     -> fill(p.pT());
        if (cutsand)  _hist_dNch_all_dpt_AND    -> fill(p.pT());
        if (cutsxor)  _hist_dNch_all_dpt_XOR    -> fill(p.pT());
      }

      // Filling multiplicity histograms
      if ( charged.size() >= 1 ) {
        if (cutsor)  _hist_dNev_all_dM_OR  -> fill(charged.size());
        if (cutsand) _hist_dNev_all_dM_AND -> fill(charged.size());
      }

      // Filling leading-pt histograms
      if (cutsor)  _hist_dNch_leading_dpt_OR  -> fill(leading_pt);
      if (cutsand) _hist_dNch_leading_dpt_AND -> fill(leading_pt);
      if (cutsxor) _hist_dNch_leading_dpt_XOR -> fill(leading_pt);

      // Integrating leading-pt histograms
      for (size_t i = 0 ; i < _hist_integrated_leading_pt_OR->numBins() ; ++i) {
        double binlimitlow_t = _hist_integrated_leading_pt_OR->bin(i).xMin();
        double weightbw_t    = _hist_integrated_leading_pt_OR->bin(i).xWidth();
        double xbin_t        = _hist_integrated_leading_pt_OR->bin(i).xMid();
        if (leading_pt > binlimitlow_t) {
          if (cutsor)  _hist_integrated_leading_pt_OR  -> fill(xbin_t, weightbw_t);
          if (cutsand) _hist_integrated_leading_pt_AND -> fill(xbin_t, weightbw_t);
          if (cutsxor) _hist_integrated_leading_pt_XOR -> fill(xbin_t, weightbw_t);
        }
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {
      normalize(_hist_dNch_all_dEta_OR);
      normalize(_hist_dNch_all_dEta_AND);
      normalize(_hist_dNch_all_dEta_XOR);
      normalize(_hist_dNch_all_dEta_XORpm);

      normalize(_hist_dNch_all_dpt_OR);
      normalize(_hist_dNch_all_dpt_AND);
      normalize(_hist_dNch_all_dpt_XOR);

      normalize(_hist_dNch_leading_dpt_OR);
      normalize(_hist_dNch_leading_dpt_AND);
      normalize(_hist_dNch_leading_dpt_XOR);

      normalize(_hist_integrated_leading_pt_OR);
      normalize(_hist_integrated_leading_pt_AND);
      normalize(_hist_integrated_leading_pt_XOR);

      normalize(_hist_dNev_all_dM_OR);
      normalize(_hist_dNev_all_dM_AND);
    }


  private:

    // Cuts
    double MinEnergy, EtaForwardMin, EtaForwardMax, EtaCentralCut, MinParticlePt;

    // Histograms
    Histo1DPtr
    _hist_dNch_all_dEta_AND,
                  _hist_dNch_all_dEta_OR,
                  _hist_dNch_all_dEta_XOR,
                  _hist_dNch_all_dEta_XORpm;
    Histo1DPtr
    _hist_dNch_all_dpt_AND,
                  _hist_dNch_all_dpt_OR,
                  _hist_dNch_all_dpt_XOR;
    Histo1DPtr
    _hist_dNch_leading_dpt_AND,
                  _hist_dNch_leading_dpt_OR,
                  _hist_dNch_leading_dpt_XOR;
    Histo1DPtr
    _hist_integrated_leading_pt_AND,
                  _hist_integrated_leading_pt_OR,
                  _hist_integrated_leading_pt_XOR;
    Histo1DPtr
    _hist_dNev_all_dM_AND,
                  _hist_dNev_all_dM_OR;

  };


  DECLARE_RIVET_PLUGIN(CMS_2018_I1680318);

}