rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

CLEO_2017_I1519168

Mass distributions in the decays $D^0\to \pi^+\pi^-\pi^+\pi^-$ and $D^0\to K^+K^-\pi^+\pi^-$
Experiment: CLEO (CESR)
Inspire ID: 1519168
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • JHEP 05 (2017) 143
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing D0 mesons

Measurement of the mass distributions in the decays $D^0\to \pi^+\pi^-\pi^+\pi^-$ and $D^0\to K^+K^-\pi^+\pi^-$ using data from CLEO. The data were read from the plots in the paper and therefore for some points the error bars are the size of the point. It is also not clear that any resolution effects have been unfolded.

Source code: CLEO_2017_I1519168.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief D0 -> K+ K- pi+ pi- and 2pi+2pi-
  class CLEO_2017_I1519168 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(CLEO_2017_I1519168);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==421);
      declare(ufs, "UFS");
      DecayedParticles D0(ufs);
      D0.addStable(PID::PI0);
      D0.addStable(PID::K0S);
      D0.addStable(PID::ETA);
      D0.addStable(PID::ETAPRIME);
      declare(D0, "D0");
      // histograms
      for(unsigned int ix=0;ix<8;++ix)
	book(_h[ix   ],1,1,1+ix);
      for(unsigned int ix=0;ix<6;++ix)
	book(_h[ix+ 8],2,1,1+ix);
      for(unsigned int ix=0;ix<4;++ix)
	book(_h[ix+14],3,1,1+ix);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // define the decay mode
      static const map<PdgId,unsigned int> & mode1   = { { 211,2}, { -211,2}};
      static const map<PdgId,unsigned int> & mode2   = { { 321,1}, { -321,1}, { 211,1}, { -211,1}};
      DecayedParticles D0 = apply<DecayedParticles>(event, "D0");
      // loop over particles
      for(unsigned int ix=0;ix<D0.decaying().size();++ix) {
	int sign = D0.decaying()[ix].pid()/421;
	if ( D0.modeMatches(ix,4,mode1)) {
	  const Particles & pip= D0.decayProducts()[ix].at( sign*211);
	  const Particles & pim= D0.decayProducts()[ix].at(-sign*211);
	  bool KSveto=false;
	  set<double> mpm; 
	  for(unsigned int ix=0;ix<2;++ix) {
	    for(unsigned int iy=0;iy<2;++iy) {
	      double m2 = (pip[ix].momentum()+pim[iy].momentum()).mass2();
	      double m = sqrt(m2);
	      mpm.insert(m2);
	      if(abs(m-0.497611)<0.0165) KSveto=true;
	    }
	  }
	  if(KSveto) continue;
	  _h[0]->fill(*mpm.begin());
	  _h[1]->fill(*mpm.rbegin());
	  for(const double & m2 : mpm) _h[2]->fill(m2);
	  FourMomentum ppp = pip[0].momentum()+pip[1].momentum();
	  _h[3]->fill(ppp.mass2());
	  FourMomentum pmm = pim[0].momentum()+pim[1].momentum();
	  double m2ppm[2] = {(ppp+pim[0].momentum()).mass2(),(ppp+pim[1].momentum()).mass2()};
	  if(m2ppm[0]>m2ppm[1]) swap(m2ppm[0],m2ppm[1]);
	  _h[4]->fill(m2ppm[0]);
	  _h[5]->fill(m2ppm[1]);
	  double m2mmp[2] = {(pmm+pip[0].momentum()).mass2(),(pmm+pip[1].momentum()).mass2()};
	  if(m2mmp[0]>m2mmp[1]) swap(m2mmp[0],m2mmp[1]);
	  _h[6]->fill(m2mmp[0]);
	  _h[7]->fill(m2ppm[1]);
	}
	else if ( D0.modeMatches(ix,4,mode2)) {
	  const Particles & Kp = D0.decayProducts()[ix].at( sign*321);
	  const Particles & Km = D0.decayProducts()[ix].at(-sign*321);
	  const Particles & pip= D0.decayProducts()[ix].at( sign*211);
	  const Particles & pim= D0.decayProducts()[ix].at(-sign*211);
	  double mpipi = (pip[0].momentum()+pim[0].momentum()).mass();
	  if(abs(mpipi-0.497611)<0.0165) continue;
	  _h[ 8]->fill((Kp [0].momentum()+Km [0].momentum()).mass2());
	  _h[ 9]->fill((Kp [0].momentum()+pip[0].momentum()).mass2());
	  _h[10]->fill((Kp [0].momentum()+pim[0].momentum()).mass2());
	  _h[11]->fill((Km [0].momentum()+pip[0].momentum()).mass2());
	  _h[12]->fill((Km [0].momentum()+pim[0].momentum()).mass2());
	  _h[13]->fill(sqr(mpipi));
	  _h[14]->fill((Kp [0].momentum()+Km [0].momentum()+pip[0].momentum()).mass2());
	  _h[15]->fill((Kp [0].momentum()+Km [0].momentum()+pim[0].momentum()).mass2());
	  _h[16]->fill((Kp [0].momentum()+pip[0].momentum()+pim[0].momentum()).mass2());
	  _h[17]->fill((Km [0].momentum()+pip[0].momentum()+pim[0].momentum()).mass2());
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<18;++ix)
	normalize(_h[ix],1.,false);
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h[18];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(CLEO_2017_I1519168);

}