1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"
namespace Rivet {
/// @brief D0 -> KS0 K+/- pi-/+
class CLEO_2012_I1094160 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEO_2012_I1094160);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
UnstableParticles ufs = UnstableParticles(Cuts::abspid==421);
declare(ufs, "UFS");
DecayedParticles D0(ufs);
D0.addStable(PID::PI0);
D0.addStable(PID::K0S);
D0.addStable(PID::ETA);
D0.addStable(PID::ETAPRIME);
declare(D0, "D0");
// histograms
for(unsigned int ix=0;ix<2;++ix) {
book(_h_K0Km [ix],1,1,1+3*ix);
book(_h_K0pip[ix],1,1,2+3*ix);
book(_h_Kmpip[ix],1,1,3+3*ix);
book(_h_K0Kp [ix],2,1,1+3*ix);
book(_h_K0pim[ix],2,1,2+3*ix);
book(_h_Kppim[ix],2,1,3+3*ix);
book(_dalitz [ix],"dalitz_"+toString(ix+1),50,0.3,2.0,50,0.3,2.);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const map<PdgId,unsigned int> & mode = { { 321,1},{-211,1}, { 310,1}};
static const map<PdgId,unsigned int> & modeCC = { {-321,1},{ 211,1}, { 310,1}};
DecayedParticles D0 = apply<DecayedParticles>(event, "D0");
// loop over particles
for(unsigned int ix=0;ix<D0.decaying().size();++ix) {
if( !D0.modeMatches(ix,3,mode ) &&
!D0.modeMatches(ix,3,modeCC) ) continue;
const Particles & K0 = D0.decayProducts()[ix].at(310);
int sign = D0.decaying()[ix].pid()/421;
const Particles & pip= D0.decayProducts()[ix].find( sign*211) == D0.decayProducts()[ix].end() ?
Particles() : D0.decayProducts()[ix].at( sign*211);
const Particles & pim= D0.decayProducts()[ix].find(-sign*211) == D0.decayProducts()[ix].end() ?
Particles() : D0.decayProducts()[ix].at(-sign*211);
const Particles & Kp = D0.decayProducts()[ix].find( sign*321) == D0.decayProducts()[ix].end() ?
Particles() : D0.decayProducts()[ix].at( sign*321);
const Particles & Km = D0.decayProducts()[ix].find(-sign*321) == D0.decayProducts()[ix].end() ?
Particles() : D0.decayProducts()[ix].at(-sign*321);
// K0S K- pi+
if( Km.size()==1 && pip.size()==1) {
double mK0pip = (K0[0].momentum()+pip[0].momentum() ).mass2();
double mKmpip = (Km[0].momentum()+pip[0].momentum() ).mass2();
double mKK = (K0[0].momentum()+Km [0].momentum() ).mass2();
for(unsigned int ix=0;ix<2;++ix) {
_h_K0Km [ix]->fill(mKK );
_h_K0pip[ix]->fill(mK0pip);
_h_Kmpip[ix]->fill(mKmpip);
}
_dalitz[0]->fill(mKmpip,mK0pip);
}
// K0S K+ pi-
else if( Kp.size()==1 && pim.size()==1) {
double mK0pim = (K0[0].momentum()+pim[0].momentum() ).mass2();
double mKppim = (Kp[0].momentum()+pim[0].momentum() ).mass2();
double mKK = (K0[0].momentum()+Kp [0].momentum() ).mass2();
for(unsigned int ix=0;ix<2;++ix) {
_h_K0Kp [ix]->fill(mKK );
_h_K0pim[ix]->fill(mK0pim);
_h_Kppim[ix]->fill(mKppim);
}
_dalitz[1]->fill(mKppim,mK0pim);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=0;ix<2;++ix) {
normalize(_h_K0Km [ix]);
normalize(_h_K0pip[ix]);
normalize(_h_Kmpip[ix]);
normalize(_h_K0Kp [ix]);
normalize(_h_K0pim[ix]);
normalize(_h_Kppim[ix]);
normalize(_dalitz [ix]);
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_Kmpip[2], _h_K0pip[2], _h_K0Km[2];
Histo1DPtr _h_Kppim[2], _h_K0pim[2], _h_K0Kp[2];
Histo2DPtr _dalitz[2];
/// @}
};
RIVET_DECLARE_PLUGIN(CLEO_2012_I1094160);
}
|