|
Rivet analyses reference
CLEO_2009_I832707
Analysis of $\psi(2S)\to\gamma\chi_{c(1,2)}$ decays using $\chi_{c(1,2)}\to J/\psi\gamma$
Experiment: CLEO (CESR)
Inspire ID: 832707
Status: VALIDATED NOHEPDATA
Authors:
References:
- Phys.Rev.D 80 (2009) 112003
Beams: e- e+
Beam energies: (1.8, 1.8) GeV
Run details:
Analysis of the angular distribution of the photons and leptons produced in $e^+e^-\to \psi(2S) \to \gamma\chi_{c(1,2)}$ followed by $\chi_{c(1,2)}\to\gamma J/\psi$ and $J/\psi\to\ell^+\ell^-$ Gives information about the decay and is useful for testing correlations in charmonium decays. N.B. the data was read from the figures in the paper and is not corrected and should only be used qualatively.
Source code:
CLEO_2009_I832707.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief psi(2S) -> gamma chi_c1,2
class CLEO_2009_I832707 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEO_2009_I832707);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(UnstableParticles(Cuts::pid==20443 || Cuts::pid==445), "UFS");
declare(FinalState(), "FS");
for(unsigned int ix=0;ix<2;++ix)
book(_h[ix],1,1,1+ix);
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for( const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// get the axis, direction of incoming electron
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
Vector3 axis;
if(beams.first.pid()>0)
axis = beams.first .momentum().p3().unit();
else
axis = beams.second.momentum().p3().unit();
// types of final state particles
const FinalState& fs = apply<FinalState>(event, "FS");
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// loop over chi_c states
Particle chi;
bool matched = false;
const UnstableParticles & ufs = apply<UnstableParticles>(event, "UFS");
for (const Particle& p : ufs.particles()) {
if(p.children().empty()) continue;
map<long,int> nRes=nCount;
int ncount = ntotal;
findChildren(p,nRes,ncount);
if(ncount==1) {
matched = true;
for(auto const & val : nRes) {
if(val.first==PID::PHOTON) {
if(val.second!=1) {
matched = false;
break;
}
}
else if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
chi=p;
break;
}
}
}
if(!matched) vetoEvent;
// have chi_c find psi2S
if(chi.parents().empty() || chi.children().size()!=2) vetoEvent;
Particle psi2S = chi.parents()[0];
if(psi2S.pid()!=100443 || psi2S.children().size()!=2) vetoEvent;
// then the first photon
Particle gamma1;
if(psi2S.children()[0].pid()==PID::PHOTON)
gamma1 = psi2S.children()[0];
else if(psi2S.children()[1].pid()==PID::PHOTON)
gamma1 = psi2S.children()[1];
else
vetoEvent;
// then the J/psi and second photon
Particle JPsi,gamma2;
if(chi.children()[0].pid()==PID::PHOTON &&
chi.children()[1].pid()==443) {
gamma2 = chi.children()[0];
JPsi = chi.children()[1];
}
else if(chi.children()[1].pid()==PID::PHOTON &&
chi.children()[0].pid()==443) {
gamma2 = chi.children()[1];
JPsi = chi.children()[0];
}
else
vetoEvent;
// finally the leptons from J/psi decay
if(JPsi.children().size()!=2) vetoEvent;
if(JPsi.children()[0].pid()!=-JPsi.children()[1].pid()) vetoEvent;
if(JPsi.children()[0].abspid()!=PID::EMINUS &&
JPsi.children()[0].abspid()!=PID::MUON) vetoEvent;
Particle lm = JPsi.children()[0];
Particle lp = JPsi.children()[1];
if(lm.pid()<0) swap(lm,lp);
// type chi state
unsigned int ichi= chi.pid()==445 ? 1 : 0;
// axis in the chi frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(chi.momentum().betaVec());
FourMomentum pGamma2 = boost1.transform(gamma2.momentum());
Vector3 axis1 = pGamma2.p3().unit();
// cos thetaxs distributions
FourMomentum pJpsi = boost1.transform(JPsi.momentum());
FourMomentum plp = boost1.transform( lp.momentum());
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pJpsi.betaVec());
Vector3 axis2 = boost2.transform(plp).p3().unit();
Vector3 e2z = gamma2.momentum().p3().unit();
_h[ichi]->fill(abs(e2z.dot(axis2)));
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=0;ix<2;++ix) {
normalize(_h[ix]);
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h[2];
/// @}
};
RIVET_DECLARE_PLUGIN(CLEO_2009_I832707);
}
|
|