rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

CLEO_2001_I552541

Correlated $\Lambda^+_c\bar{\Lambda}_c$ production in $e^+e^-$ annihilations at $\sqrt{s}=10.5$ GeV
Experiment: CLEO ()
Inspire ID: 552541
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev. D63 (2001) 112003, 2001
Beams: e+ e-
Beam energies: (5.3, 5.3) GeV
Run details:
  • $e^+ e^-$ analysis near the $\Upsilon(4S)$ resonance

Measurement of correlations between $\Lambda^+_c$ and $\bar{\Lambda}_c$ production in $e^+e^-$ annihilations at $\sqrt{s}=10.5$ GeV by the CLEO experiment. Useful fo studying models of baryon production.

Source code: CLEO_2001_I552541.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Add a short analysis description here
  class CLEO_2001_I552541 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(CLEO_2001_I552541);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS");
      book(_d_Dbar0[0], "/TMP/d_D0_low" );
      book(_d_Dbar0[1], "/TMP/d_D0_high");
      book(_d_Dm[0]   , "/TMP/d_Dm_low" );
      book(_d_Dm[1]   , "/TMP/d_Dm_high");
      book(_d_Lam[0]  , "/TMP/d_La_low" );
      book(_d_Lam[1]  , "/TMP/d_La_high");
      
      book(_n_Dbar0[0][0], "/TMP/d_D0_low_low"  );
      book(_n_Dbar0[0][1], "/TMP/d_D0_low_high" );
      book(_n_Dbar0[1][0], "/TMP/d_D0_high_low" );
      book(_n_Dbar0[1][1], "/TMP/d_D0_high_high");
      book(_n_Dm[0][0]   , "/TMP/d_Dm_low_low"  );
      book(_n_Dm[0][1]   , "/TMP/d_Dm_low_high" );
      book(_n_Dm[1][0]   , "/TMP/d_Dm_high_low" );
      book(_n_Dm[1][1]   , "/TMP/d_Dm_high_high");
      book(_n_Lam[0][0]  , "/TMP/d_La_low_low"  );
      book(_n_Lam[0][1]  , "/TMP/d_La_low_high" );
      book(_n_Lam[1][0]  , "/TMP/d_La_high_low" );
      book(_n_Lam[1][1]  , "/TMP/d_La_high_high");

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const UnstableParticles& ufs = apply<UnstableFinalState>(event, "UFS");
      for(const Particle & p : ufs.particles(Cuts::pid==-4122 or Cuts::pid==-411 or Cuts::pid==-421)) {
	long id1 = p.pid();
	double mom1 = p.p3().mod();
	if(mom1<2.3*GeV || mom1>5.*GeV) continue;
	bool high1 = mom1>3.3*GeV;
	if(id1==-4122) {
	  _d_Lam[high1]->fill();
	}
	else if(id1==-411) {
	  _d_Dm[high1]->fill();
	}
	else if(id1==-421) {
	  _d_Dbar0[high1]->fill();
	}
	for(const Particle & p2 : ufs.particles(Cuts::pid==4122)) {
	  if(p.p3().angle(p2.p3())<0.5*M_PI) continue;
	  double mom2 = p2.p3().mod();
	  if(mom2<2.3*GeV || mom2>5.*GeV) continue;
	  bool high2 = mom2>3.3*GeV;
	  if(id1==-4122) {
	    _n_Lam[high1][high2]->fill();
	  }
	  else if(id1==-411) {
	    _n_Dm[high1][high2]->fill();
	  }
	  else if(id1==-421) {
	    _n_Dbar0[high1][high2]->fill();
	  }
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      Scatter1D R_D0_low_low    = *_n_Dbar0[0][0]/ *_d_Dbar0[0];
      Scatter1D R_D0_low_high   = *_n_Dbar0[0][1]/ *_d_Dbar0[0];
      Scatter1D R_D0_high_low   = *_n_Dbar0[1][0]/ *_d_Dbar0[1];
      Scatter1D R_D0_high_high  = *_n_Dbar0[1][1]/ *_d_Dbar0[1];
      Scatter1D R_Dm_low_low    = *_n_Dm[0][0]   / *_d_Dm[0];
      Scatter1D R_Dm_low_high   = *_n_Dm[0][1]   / *_d_Dm[0];
      Scatter1D R_Dm_high_low   = *_n_Dm[1][0]   / *_d_Dm[1];
      Scatter1D R_Dm_high_high  = *_n_Dm[1][1]   / *_d_Dm[1];
      Scatter1D R_Lam_low_low   = *_n_Lam[0][0]  / *_d_Lam[0];
      Scatter1D R_Lam_low_high  = *_n_Lam[0][1]  / *_d_Lam[0];
      Scatter1D R_Lam_high_low  = *_n_Lam[1][0]  / *_d_Lam[1];
      Scatter1D R_Lam_high_high = *_n_Lam[1][1]  / *_d_Lam[1];
      for(unsigned int ix=3;ix<5;++ix) {
	for(unsigned int iy=1;iy<5;++iy) {
	  double num(0.),den(0.),num_err(0.),den_err(0.);
	  if(ix==3) {
	    if(iy==1) {
	      den     =  R_D0_low_low  .points()[0].x();
	      den_err =  R_D0_low_low  .points()[0].xErrAvg();
	    }
	    else if(iy==2) {
	      den     =  R_D0_high_low .points()[0].x();
	      den_err =  R_D0_high_low .points()[0].xErrAvg();
	    }
	    else if(iy==3) {
	      den     =  R_D0_low_low  .points()[0].x();
	      den_err =  R_D0_low_low  .points()[0].xErrAvg();
	    }
	    else if(iy==4) {
	      den     =  R_D0_high_high.points()[0].x();
	      den_err =  R_D0_high_high.points()[0].xErrAvg();
	    }
	  }
	  else if(ix==4) {
	    if(iy==1) {
	      den     =  R_Dm_low_low  .points()[0].x();
	      den_err =  R_Dm_low_low  .points()[0].xErrAvg();
	    }
	    else if(iy==2) {
	      den     =  R_Dm_high_low .points()[0].x();
	      den_err =  R_Dm_high_low .points()[0].xErrAvg();
	    }
	    else if(iy==3) {
	      den     =  R_Dm_low_low  .points()[0].x();
	      den_err =  R_Dm_low_low  .points()[0].xErrAvg();
	    }
	    else if(iy==4) {
	      den     =  R_Dm_high_high.points()[0].x();
	      den_err =  R_Dm_high_high.points()[0].xErrAvg();
	    }
	  }
	  if(iy==1) {
	    num     =  R_Lam_low_low  .points()[0].x();
	    num_err =  R_Lam_low_low  .points()[0].xErrAvg();
	  }
	  else if(iy==2) {
	    num     =  R_Lam_high_low .points()[0].x();
	    num_err =  R_Lam_high_low .points()[0].xErrAvg();
	  }
	  else if(iy==3) {
	    num     =  R_Lam_low_low  .points()[0].x();
	    num_err =  R_Lam_low_low  .points()[0].xErrAvg();
	  }
	  else if(iy==4) {
	    num     =  R_Lam_high_high.points()[0].x();
	    num_err =  R_Lam_high_high.points()[0].xErrAvg();
	  }
	  double val = num/den;
	  double err = val>=0. ? val*sqrt(sqr(num_err/num)+sqr(den_err/den)) : 0.;
	  Scatter2DPtr ratio;
	  book(ratio,ix, 1, iy);
	  Scatter2D temphisto(refData(ix, 1, iy));
	  const double x  = temphisto.point(0).x();
	  pair<double,double> ex = temphisto.point(0).xErrs();
	  ratio->addPoint(x, val, ex, make_pair(err,err));
	}
      }
    }

    //@}


    /// @name Histograms
    //@{
    CounterPtr _d_Dbar0[2],_d_Dm[2],_d_Lam[2];
    CounterPtr _n_Dbar0[2][2],_n_Dm[2][2],_n_Lam[2][2];
    //@}


  };


  // The hook for the plugin system
  DECLARE_RIVET_PLUGIN(CLEO_2001_I552541);


}