rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BESIII_2022_I1864775

Analysis of $J/\psi$ decays to $\Xi^-\bar{\Xi}^+$
Experiment: BESIII (BEPC)
Inspire ID: 1864775
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Nature 606 (2022) 7912, 64-69
Beams: e- e+
Beam energies: (1.6, 1.6) GeV
Run details:
  • e+e- > J/psi

Analysis of the angular distribution of the baryons, and decay products, produced in $e^+e^-\to J/\psi \to \Xi^-\bar{\Xi}^+$. Gives information about the decay and is useful for testing correlations in hadron decays. N.B. the data is not corrected and should only be used qualatively.

Source code: BESIII_2022_I1864775.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Jpsi -> Xi- Xibar+
  class BESIII_2022_I1864775 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2022_I1864775);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(UnstableParticles(), "UFS");
      declare(FinalState(), "FS");
      // Book histograms
      book(_h_T1, "T1",20,-1.,1.);
      book(_h_T2, "T2",20,-1.,1.);
      book(_h_T3, "T3",20,-1.,1.);
      book(_h_T4, "T4",20,-1.,1.);
      book(_h_T5, "T5",20,-1.,1.);
      book(_h_cTheta,"cTheta",20,-1.,1.);
      book(_h_clam[0], "cthetaP",20,-1,1);
      book(_h_clam[1], "cthetaM",20,-1,1);
      book(_wsum,"TMP/wsum");
    }

    void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
      for( const Particle &child : p.children()) {
	if(child.children().empty()) {
	  nRes[child.pid()]-=1;
	  --ncount;
	}
	else
	  findChildren(child,nRes,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis;
      if(beams.first.pid()>0)
	axis = beams.first .momentum().p3().unit();
      else
	axis = beams.second.momentum().p3().unit();
      // types of final state particles
      const FinalState& fs = apply<FinalState>(event, "FS");
      map<long,int> nCount;
      int ntotal(0);
      for (const Particle& p :  fs.particles()) {
	nCount[p.pid()] += 1;
	++ntotal;
      }
      // loop over lambda0 baryons
      const UnstableParticles & ufs = apply<UnstableParticles>(event, "UFS");
      Particle Xi,XiBar;
      bool matched(false);
      for (const Particle& p :  ufs.particles(Cuts::abspid==3312)) {
       	if(p.children().empty()) continue;
       	map<long,int> nRes=nCount;
       	int ncount = ntotal;
       	findChildren(p,nRes,ncount);
       	matched=false;
       	// check for antiparticle
      	for (const Particle& p2 :  ufs.particles(Cuts::pid==-p.pid())) {
      	  if(p2.children().empty()) continue;
      	  map<long,int> nRes2=nRes;
      	  int ncount2 = ncount;
      	  findChildren(p2,nRes2,ncount2);
      	  if(ncount2==0) {
      	    matched = true;
      	    for(auto const & val : nRes2) {
      	      if(val.second!=0) {
      		matched = false;
      		break;
      	      }
      	    }
            // found baryon and antibaryon
      	    if(matched) {
	      if(p.pid()>0) {
		Xi    = p;
		XiBar = p2;
	      }
	      else {
		Xi    = p2;
		XiBar = p;
	      }	
       	      break;
       	    }
       	  }
       	}
      	if(matched) break;
      }
      if(!matched) vetoEvent;
      // find the lambda and antilambda
      Particle Lambda,LamBar;
      if ( Xi.children()[0].pid() ==3122 )
	Lambda = Xi.children()[0];
      else if ( Xi.children()[1].pid() ==3122 )
	Lambda = Xi.children()[1];
      else vetoEvent;
      if ( XiBar.children()[0].pid() ==-3122 )
	LamBar = XiBar.children()[0];
      else if ( XiBar.children()[1].pid() ==-3122 )
	LamBar = XiBar.children()[1];
      else vetoEvent;
      // boost to the Xi rest frame
      LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Xi.momentum().betaVec());
      Vector3 e1z = Xi.momentum().p3().unit();
      Vector3 e1y = e1z.cross(axis).unit();
      Vector3 e1x = e1y.cross(e1z).unit();
      FourMomentum pLambda = boost1.transform(Lambda.momentum());
      Vector3 axis1 = pLambda.p3().unit();
      double n1x(e1x.dot(axis1)),n1y(e1y.dot(axis1)),n1z(e1z.dot(axis1));
      // boost to the Xi bar
      LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(XiBar.momentum().betaVec());
      FourMomentum pLamBar = boost2.transform(LamBar.momentum());
      Vector3 axis2 = pLamBar.p3().unit();
      double n2x(e1x.dot(axis2)),n2y(e1y.dot(axis2)),n2z(e1z.dot(axis2));
      double cosX = axis.dot(Xi.momentum().p3().unit());
      double sinX = sqrt(1.-sqr(cosX));
      double T1 = sqr(sinX)*n1x*n2x+sqr(cosX)*n1z*n2z;
      double T2 = -sinX*cosX*(n1x*n2z+n1z*n2x);
      double T3 = -sinX*cosX*n1y;
      double T4 = -sinX*cosX*n2y;
      double T5 = n1z*n2z-sqr(sinX)*n1y*n2y;
      _h_T1->fill(cosX,T1);
      _h_T2->fill(cosX,T2);
      _h_T3->fill(cosX,T3);
      _h_T4->fill(cosX,T4);
      _h_T5->fill(cosX,T5);
      _h_cTheta->fill(cosX);
      _wsum->fill();
      // finally for the lambda decay
      Particle proton;
      bool found(false);
      if(Lambda.children()[0].pid()==2212 && 
	 Lambda.children()[1].pid()==-211) {
	proton = Lambda.children()[0];
	found = true;
      }
      else if(Lambda.children()[1].pid()==2212 && 
	      Lambda.children()[0].pid()==-211) {
	proton = Lambda.children()[1];
	found = true;
      }
      if(found) {
	// first boost to Xi rest frame
	FourMomentum pproton = boost1.transform(proton.momentum());
	LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pLambda.betaVec());
	Vector3 axis = pLambda.p3().unit();
	FourMomentum pp = boost3.transform(pproton);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	_h_clam[0]->fill(cTheta);
      }
      // finally for the anti lambda decay
      found = false;
      if(LamBar.children()[0].pid()==-2212 && 
	 LamBar.children()[1].pid()==211) {
	proton = LamBar.children()[0];
	found = true;
      }
      else if(LamBar.children()[1].pid()==-2212 && 
	      LamBar.children()[0].pid()==211) {
	proton = LamBar.children()[1];
	found = true;
      }
      if(found) {
	// first boost to Xi rest frame
	FourMomentum pproton = boost2.transform(proton.momentum());
	LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pLamBar.betaVec());
	Vector3 axis = pLamBar.p3().unit();
	FourMomentum pp = boost3.transform(pproton);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	_h_clam[1]->fill(cTheta);
      }
    }
    
    pair<double,pair<double,double> > calcAlpha0(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,make_pair(0.,0.));
      double d = 3./(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double c = 3.*(hist->xMax()-hist->xMin())/(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double sum1(0.),sum2(0.),sum3(0.),sum4(0.),sum5(0.);
      for (auto bin : hist->bins() ) {
       	double Oi = bin.area();
	if(Oi==0.) continue;
	double a =  d*(bin.xMax() - bin.xMin());
	double b = d/3.*(pow(bin.xMax(),3) - pow(bin.xMin(),3));
       	double Ei = bin.areaErr();
	sum1 +=   a*Oi/sqr(Ei);
	sum2 +=   b*Oi/sqr(Ei);
	sum3 += sqr(a)/sqr(Ei);
	sum4 += sqr(b)/sqr(Ei);
	sum5 +=    a*b/sqr(Ei);
      }
      // calculate alpha
      double alpha = (-c*sum1 + sqr(c)*sum2 + sum3 - c*sum5)/(sum1 - c*sum2 + c*sum4 - sum5);
      // and error
      double cc = -pow((sum3 + sqr(c)*sum4 - 2*c*sum5),3);
      double bb = -2*sqr(sum3 + sqr(c)*sum4 - 2*c*sum5)*(sum1 - c*sum2 + c*sum4 - sum5);
      double aa =  sqr(sum1 - c*sum2 + c*sum4 - sum5)*(-sum3 - sqr(c)*sum4 + sqr(sum1 - c*sum2 + c*sum4 - sum5) + 2*c*sum5);      
      double dis = sqr(bb)-4.*aa*cc;
      if(dis>0.) {
	dis = sqrt(dis);
	return make_pair(alpha,make_pair(0.5*(-bb+dis)/aa,-0.5*(-bb-dis)/aa));
      }
      else {
	return make_pair(alpha,make_pair(0.,0.));
      }
    }
    
    pair<double,double> calcCoeff(unsigned int imode,Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai(0.),bi(0.);
	if(imode==0) {
	  bi = (pow(1.-sqr(bin.xMin()),1.5) - pow(1.-sqr(bin.xMax()),1.5))/3.;
	}
	else if(imode>=2 && imode<=4) {
	  bi = ( pow(bin.xMin(),3)*( -5. + 3.*sqr(bin.xMin()))  +
		 pow(bin.xMax(),3)*(  5. - 3.*sqr(bin.xMax())))/15.;
	}
	else
	  assert(false);
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      normalize(_h_cTheta);
      scale(_h_T1,1./ *_wsum);
      scale(_h_T2,1./ *_wsum);
      scale(_h_T3,1./ *_wsum);
      scale(_h_T4,1./ *_wsum);
      scale(_h_T5,1./ *_wsum);
      normalize(_h_clam[0]);
      normalize(_h_clam[1]);
      // calculate alpha0
      pair<double,pair<double,double> > alpha0 = calcAlpha0(_h_cTheta);
      Scatter2DPtr _h_alpha0;
      book(_h_alpha0,2,1,1);
      _h_alpha0->addPoint(0.5, alpha0.first, make_pair(0.5,0.5),
			  make_pair(alpha0.second.first,alpha0.second.second) );
      double s2 = -1. + sqr(alpha0.first);
      double s3 = 3 + alpha0.first;
      double s1 = sqr(s3);
      // alpha- and alpha+ from proton data
      pair<double,double> c_T2 = calcCoeff(2,_h_T2);
      pair<double,double> c_T3 = calcCoeff(3,_h_T3);
      pair<double,double> c_T4 = calcCoeff(4,_h_T4);
      double s4 = sqr(c_T2.first);
      double s5 = sqr(c_T3.first);
      double s6 = sqr(c_T4.first);
      double disc = s1*s5*s6*(-9.*s2*s4 + 4.*s1*s5*s6);
      if(disc<0.) return;
      disc = sqrt(disc);
      double aM = -sqrt(-1./s2/s6*(2.*s1*s5*s6+disc));
      double aP = c_T4.first/c_T3.first*aM;
      double aM_M = (2*(alpha0.first*c_T4.first*alpha0.second.first + c_T4.second*s2)*(disc + 2*s1*s5*s6)
		     - c_T4.first*s2*(4*s3*c_T3.first*c_T4.first*(c_T3.first*c_T4.first*alpha0.second.first +s3*c_T4.first*c_T3.second +s3*c_T3.first*c_T4.second) +
				      (disc*(- 9*s2*s3*c_T2.first*c_T3.first*c_T4.first* c_T2.second
					     + 9*((1 -  alpha0.first*(3 + 2*alpha0.first))* c_T3.first*c_T4.first*alpha0.second.first -  s2*s3*c_T4.first*c_T3.second
						  - s2*s3*c_T3.first*c_T4.second)* s4
					     + 8*(c_T3.first*c_T4.first*alpha0.second.first +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)* s1*s5*s6))
				      /(4*pow(3 + alpha0.first,3)*pow(c_T3.first,3)*pow(c_T4.first,3) -9*s2*s3*c_T3.first*c_T4.first*s4)))/
	(2.*pow(c_T4.first,3)*pow(s2,2)*sqrt(-((disc + 2*s1*s5*s6)/(s2*s6))));
      double aM_P = (2*(alpha0.first*c_T4.first*alpha0.second.second + c_T4.second*s2)*(disc + 2*s1*s5*s6)
		     - c_T4.first*s2*(4*s3*c_T3.first*c_T4.first*(c_T3.first*c_T4.first*alpha0.second.second +s3*c_T4.first*c_T3.second +s3*c_T3.first*c_T4.second) +
				      (disc*(- 9*s2*s3*c_T2.first*c_T3.first*c_T4.first* c_T2.second
					     + 9*((1 -  alpha0.first*(3 + 2*alpha0.first))* c_T3.first*c_T4.first*alpha0.second.second -  s2*s3*c_T4.first*c_T3.second
						  - s2*s3*c_T3.first*c_T4.second)* s4
					     + 8*(c_T3.first*c_T4.first*alpha0.second.second +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)* s1*s5*s6))
				      /(4*pow(3 + alpha0.first,3)*pow(c_T3.first,3)*pow(c_T4.first,3) -9*s2*s3*c_T3.first*c_T4.first*s4)))/
	(2.*pow(c_T4.first,3)*pow(s2,2)*sqrt(-((disc + 2*s1*s5*s6)/(s2*s6))));
      double aP_M = (c_T4.first*sqrt(-((disc + 2*s1*s5*s6)/   (s2*s6)))*
		     (-2*c_T3.second -  (2*alpha0.first*c_T3.first*alpha0.second.first)/s2 +  (c_T3.first*(4*s3*c_T3.first*c_T4.first*(c_T3.first*c_T4.first*alpha0.second.first +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)
													   + (disc*(-9*s2*s3*c_T2.first*c_T3.first*c_T4.first* c_T2.second
														    +  9*((1 -  alpha0.first*(3 + 2*alpha0.first))* c_T3.first*c_T4.first*alpha0.second.first -  s2*s3*c_T4.first*c_T3.second
															  -  s2*s3*c_T3.first*c_T4.second)* s4 +
														    8*(c_T3.first*c_T4.first*alpha0.second.first +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)* s1*s5*s6))/
													   (4* pow(3 + alpha0.first,3)* pow(c_T3.first,3)* pow(c_T4.first,3) -  9*s2*s3*c_T3.first*c_T4.first*s4)))/
		      (disc + 2*s1*s5*s6)))/(2.*pow(c_T3.first,2));
      double aP_P = (c_T4.first*sqrt(-((disc + 2*s1*s5*s6)/   (s2*s6)))*
		     (-2*c_T3.second -  (2*alpha0.first*c_T3.first*alpha0.second.second)/s2 +  (c_T3.first*(4*s3*c_T3.first*c_T4.first*(c_T3.first*c_T4.first*alpha0.second.second +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)
													    + (disc*(-9*s2*s3*c_T2.first*c_T3.first*c_T4.first* c_T2.second
														     +  9*((1 -  alpha0.first*(3 + 2*alpha0.first))* c_T3.first*c_T4.first*alpha0.second.second -  s2*s3*c_T4.first*c_T3.second
															   -  s2*s3*c_T3.first*c_T4.second)* s4 +
														     8*(c_T3.first*c_T4.first*alpha0.second.second +  s3*c_T4.first*c_T3.second +  s3*c_T3.first*c_T4.second)* s1*s5*s6))/
													    (4* pow(3 + alpha0.first,3)* pow(c_T3.first,3)* pow(c_T4.first,3) -  9*s2*s3*c_T3.first*c_T4.first*s4)))/
		      (disc + 2*s1*s5*s6)))/(2.*pow(c_T3.first,2));
      Scatter2DPtr _h_alphaM;
      book(_h_alphaM,2,1,3);
      _h_alphaM->addPoint(0.5, aM, make_pair(0.5,0.5),
			  make_pair(-aM_M , -aM_P ) );
      
      Scatter2DPtr _h_alphaP;
      book(_h_alphaP,2,1,5);
      _h_alphaP->addPoint(0.5, aP, make_pair(0.5,0.5),
			  make_pair(-aP_M , -aP_P  ) );
      // now for Delta
      double sDelta = (-2.*(3. + alpha0.first)*c_T3.first)/(aM*sqrt(1 - sqr(alpha0.first)));
      double cDelta = (-3*(3 + alpha0.first)*c_T2.first)/(aM*aP*sqrt(1 - sqr(alpha0.first)));
      double Delta = asin(sDelta);
      if(cDelta<0.) Delta = M_PI-Delta;
      double ds_P = (-9*c_T2.first*((-1 + alpha0.first)*(1 + alpha0.first)*  (3 + alpha0.first)*c_T3.first*c_T4.first*c_T2.second +  c_T2.first*c_T4.first*(c_T3.first*(alpha0.second.first + 3*alpha0.first*alpha0.second.first) -(-1 + alpha0.first)*(1 + alpha0.first)*(3 + alpha0.first)*c_T3.second)
				    -  (-1 + alpha0.first)*(1 + alpha0.first)*  (3 + alpha0.first)*c_T2.first*c_T3.first*c_T4.second)*disc)/
	(pow(1 - pow(alpha0.first,2),1.5)*pow(c_T4.first,3)*pow(-((disc + 2*s1*s5*s6)/   (s2*s6)),1.5)*(-9*s2*s4 + 4*s1*s5*s6));
      double ds_M = (-9*c_T2.first*((-1 + alpha0.first)*(1 + alpha0.first)*  (3 + alpha0.first)*c_T3.first*c_T4.first*c_T2.second +  c_T2.first*c_T4.first*(c_T3.first*(alpha0.second.second + 3*alpha0.first*alpha0.second.second) -(-1 + alpha0.first)*(1 + alpha0.first)*(3 + alpha0.first)*c_T3.second)
				    -  (-1 + alpha0.first)*(1 + alpha0.first)*  (3 + alpha0.first)*c_T2.first*c_T3.first*c_T4.second)*disc)/
	(pow(1 - pow(alpha0.first,2),1.5)*pow(c_T4.first,3)*pow(-((disc + 2*s1*s5*s6)/   (s2*s6)),1.5)*(-9*s2*s4 + 4*s1*s5*s6));
      ds_P /= sqrt(1.-sqr(sDelta));
      ds_M /= sqrt(1.-sqr(sDelta));
      Scatter2DPtr _h_sin;
      book(_h_sin,2,1,2);
      _h_sin->addPoint(0.5, Delta, make_pair(0.5,0.5), make_pair( -ds_P, -ds_M) );
      // final the lambdas
      // xibar+
      Scatter2DPtr _h_lamP;
      book(_h_lamP, 2,1,7);
      pair<double,double> alpha = calcAlpha(_h_clam[0]);
      alpha.second = sqrt(sqr(alpha.second/alpha.first)+ 0.5*(sqr(aM_M)+sqr(aM_P))/sqr(aM));
      alpha.first   /= aM;
      alpha.second *=alpha.first;
      _h_lamP->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
			make_pair(alpha.second,alpha.second) );
      // xi-
      Scatter2DPtr _h_lamM;
      book(_h_lamM, 2,1,8);
      alpha = calcAlpha(_h_clam[1]);
      alpha.second = sqrt(sqr(alpha.second/alpha.first)+ 0.5*(sqr(aP_M)+sqr(aP_P))/sqr(aP));
      alpha.first   /= aP;
      alpha.second *=alpha.first;
      _h_lamM->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
			make_pair(alpha.second,alpha.second) );
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h_T1,_h_T2,_h_T3,_h_T4,_h_T5;
    Histo1DPtr _h_cTheta,_h_clam[2];
    CounterPtr _wsum;
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BESIII_2022_I1864775);

}