rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BESIII_2021_I1940222

Mass distributions in the decays $D^0\to K^-\pi^+\omega$, $D^0\to K^0_S\pi^0\omega$, $D^+\to K^0_S\pi^+\omega$
Experiment: BESIII (BEPC)
Inspire ID: 1940222
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 105 (2022) 3, 032009
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing D0 or D+ mesons

Measurement of the mass distributions in the decays $D^0\to K^-\pi^+\omega$, $D^0\to K^0_S\pi^0\omega$, $D^+\to K^0_S\pi^+\omega$ by BES. The data were read from the plots in the paper and therefore for some points the error bars are the size of the point. It is also not clear that any resolution effects have been unfolded.

Source code: BESIII_2021_I1940222.cc
  1// -*- C++ -*-
  2#include "Rivet/Analysis.hh"
  3#include "Rivet/Projections/UnstableParticles.hh"
  4#include "Rivet/Projections/DecayedParticles.hh"
  5
  6namespace Rivet {
  7
  8
  9  /// @brief D -> omega decays
 10  class BESIII_2021_I1940222 : public Analysis {
 11  public:
 12
 13    /// Constructor
 14    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2021_I1940222);
 15
 16
 17    /// @name Analysis methods
 18    /// @{
 19
 20    /// Book histograms and initialise projections before the run
 21    void init() {
 22      // Initialise and register projections
 23      UnstableParticles ufs = UnstableParticles(Cuts::abspid==411||
 24						Cuts::abspid==421);
 25      declare(ufs, "UFS");
 26      DecayedParticles DD(ufs);
 27      DD.addStable(PID::PI0);
 28      DD.addStable(PID::K0S);
 29      DD.addStable(PID::ETA);
 30      DD.addStable(PID::ETAPRIME);
 31      DD.addStable(PID::OMEGA);
 32      declare(DD, "DD");
 33      // histograms
 34      for(unsigned int ix=0;ix<9;++ix)
 35	book(_h[ix],1,1,1+ix);
 36      for(unsigned int ix=0;ix<3;++ix)
 37	book(_dalitz[ix],"dalitz_"+toString(ix+1),50,0.4,1.2,50,0.8,1.9);
 38    }
 39
 40
 41    /// Perform the per-event analysis
 42    void analyze(const Event& event) {
 43      // define the decay modes
 44      static const map<PdgId,unsigned int> & mode1   = { {-321,1},{ 211,1}, { 223,1}};
 45      static const map<PdgId,unsigned int> & mode1CC = { { 321,1},{-211,1}, { 223,1}};
 46      static const map<PdgId,unsigned int> & mode2   = { { 310,1},{ 111,1}, { 223,1}};
 47      static const map<PdgId,unsigned int> & mode3   = { { 310,1},{ 211,1}, { 223,1}};
 48      static const map<PdgId,unsigned int> & mode3CC = { { 310,1},{-211,1}, { 223,1}};
 49      DecayedParticles DD = apply<DecayedParticles>(event, "DD");
 50      // loop over particles
 51      for(unsigned int ix=0;ix<DD.decaying().size();++ix) {
 52	// D0 -> K- pi+ omega
 53	if( (DD.decaying()[ix].pid()== 421 && DD.modeMatches(ix,3,mode1)) ||
 54	    (DD.decaying()[ix].pid()==-421 && DD.modeMatches(ix,3,mode1CC))) {
 55	  int sign = DD.decaying()[ix].pid()/421;
 56	  const Particles & pip   = DD.decayProducts()[ix].at( sign*211);
 57	  const Particles & Km    = DD.decayProducts()[ix].at(-sign*321);
 58	  const Particles & omega = DD.decayProducts()[ix].at(223);
 59	  double mKpi     = (pip[0].momentum()+Km[0].momentum()).mass2();
 60	  double mpiomega = (pip[0].momentum()+omega[0].momentum()).mass2();
 61	  _dalitz[0]->fill(mKpi,mpiomega);
 62	  _h[0]->fill(sqrt(mKpi));
 63	  _h[1]->fill((Km[0].momentum()+omega[0].momentum()).mass());
 64	  _h[2]->fill(sqrt(mpiomega));
 65	  
 66	}
 67	// D0 -> KS0 pi0 omega
 68	else if (DD.decaying()[ix].abspid()==421 && DD.modeMatches(ix,3,mode2)) {
 69	  const Particles & pi0   = DD.decayProducts()[ix].at(111);
 70	  const Particles & KS0   = DD.decayProducts()[ix].at(310);
 71	  const Particles & omega = DD.decayProducts()[ix].at(223);
 72	  double mKpi     = (pi0[0].momentum()+KS0[0].momentum()).mass2();
 73	  double mpiomega = (pi0[0].momentum()+omega[0].momentum()).mass2();
 74	  _dalitz[1]->fill(mKpi,mpiomega);
 75	  _h[3]->fill(sqrt(mKpi));
 76	  _h[4]->fill((KS0[0].momentum()+omega[0].momentum()).mass());
 77	  _h[5]->fill(sqrt(mpiomega));
 78	}
 79	// D0 -> K- pi+ omega
 80	else if( (DD.decaying()[ix].pid()== 411 && DD.modeMatches(ix,3,mode3)) ||
 81		 (DD.decaying()[ix].pid()==-411 && DD.modeMatches(ix,3,mode3CC))) {
 82	  int sign = DD.decaying()[ix].pid()/411;
 83	  const Particles & pip   = DD.decayProducts()[ix].at( sign*211);
 84	  const Particles & KS0   = DD.decayProducts()[ix].at(310);
 85	  const Particles & omega = DD.decayProducts()[ix].at(223);
 86	  double mKpi     = (pip[0].momentum()+KS0[0].momentum()).mass2();
 87	  double mpiomega = (pip[0].momentum()+omega[0].momentum()).mass2();
 88	  _dalitz[2]->fill(mKpi,mpiomega);
 89	  _h[6]->fill(sqrt(mKpi));
 90	  _h[7]->fill((KS0[0].momentum()+omega[0].momentum()).mass());
 91	  _h[8]->fill(sqrt(mpiomega));
 92	  
 93	}
 94      }
 95    }
 96
 97
 98    /// Normalise histograms etc., after the run
 99    void finalize() {
100      for(unsigned int ix=0;ix<9;++ix)
101	normalize(_h[ix],1.,false);
102      for(unsigned int ix=0;ix<3;++ix)
103	normalize(_dalitz[ix]);
104    }
105
106    /// @}
107
108
109    /// @name Histograms
110    /// @{
111    Histo1DPtr _h[9];
112    Histo2DPtr _dalitz[3];
113    /// @}
114
115
116  };
117
118
119  RIVET_DECLARE_PLUGIN(BESIII_2021_I1940222);
120
121}