rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BESIII_2021_I1921775

Analysis of $\psi(2S)$ decays to $\Xi^{*0}\bar\Xi^{*0}$
Experiment: BESIII (BEPC)
Inspire ID: 1921775
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 104 (2021) 9, 092012
Beams: e- e+
Beam energies: (1.8, 1.8) GeV
Run details:
  • e+e- -> Psi(2S)

Analysis of the angular distribution of the baryons produced in $e^+e^-\to \psi(2S) \to \Xi^{*0}\bar\Xi^{*0}$. Gives information about the decay and is useful for testing correlations in hadron decays.

Source code: BESIII_2021_I1921775.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief psi2s -> Xi*0 Xibar*0
  class BESIII_2021_I1921775 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2021_I1921775);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(UnstableParticles(), "UFS");
      declare(FinalState(), "FS");
      
      book(_h_xi , 1, 1, 1);
      book(_h_xiB, 1, 1, 2);
    }

    void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
      for(const Particle &child : p.children()) {
	if(child.children().empty()) {
	  nRes[child.pid()]-=1;
	  --ncount;
	}
	else
	  findChildren(child,nRes,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis;
      if(beams.first.pid()>0)
	axis = beams.first .momentum().p3().unit();
      else
	axis = beams.second.momentum().p3().unit();
      // types of final state particles
      const FinalState& fs = apply<FinalState>(event, "FS");
      map<long,int> nCount;
      int ntotal(0);
      for (const Particle& p : fs.particles()) {
	nCount[p.pid()] += 1;
	++ntotal;
      }

      const UnstableParticles & ufs = apply<UnstableParticles>(event, "UFS");
      for (const Particle& p : ufs.particles(Cuts::abspid==3324)) {
       	if(p.children().empty()) continue;
       	map<long,int> nRes=nCount;
       	int ncount = ntotal;
       	findChildren(p,nRes,ncount);
	bool matched=false;
	// check for antiparticle
	for (const Particle& p2 : ufs.particles(Cuts::pid==-p.pid())) {
	  if(p2.children().empty()) continue;
	  map<long,int> nRes2=nRes;
	  int ncount2 = ncount;
	  findChildren(p2,nRes2,ncount2);
	  if(ncount2==0) {
	    matched = true;
	    for(auto const & val : nRes2) {
	      if(val.second!=0) {
		matched = false;
		break;
	      }
	    }
	    // fond baryon and antibaryon
	    if(matched) {
	      // calc cosine
	      double ctheta1 = p .momentum().p3().unit().dot(axis);
	      double ctheta2 = p2.momentum().p3().unit().dot(axis);
	      if(p.pid()<0) swap(ctheta1,ctheta2);
	      _h_xi->fill(ctheta1);
	      _h_xiB->fill(ctheta2);
	      break;
	    }
	  }
	}
	if(matched) break;
      }
    }

    pair<double,pair<double,double> > calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,make_pair(0.,0.));
      double d = 3./(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double c = 3.*(hist->xMax()-hist->xMin())/(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double sum1(0.),sum2(0.),sum3(0.),sum4(0.),sum5(0.);
      for (auto bin : hist->bins() ) {
       	double Oi = bin.area();
	if(Oi==0.) continue;
	double a =  d*(bin.xMax() - bin.xMin());
	double b = d/3.*(pow(bin.xMax(),3) - pow(bin.xMin(),3));
       	double Ei = bin.areaErr();
	sum1 +=   a*Oi/sqr(Ei);
	sum2 +=   b*Oi/sqr(Ei);
	sum3 += sqr(a)/sqr(Ei);
	sum4 += sqr(b)/sqr(Ei);
	sum5 +=    a*b/sqr(Ei);
      }
      // calculate alpha
      double alpha = (-c*sum1 + sqr(c)*sum2 + sum3 - c*sum5)/(sum1 - c*sum2 + c*sum4 - sum5);
      // and error
      double cc = -pow((sum3 + sqr(c)*sum4 - 2*c*sum5),3);
      double bb = -2*sqr(sum3 + sqr(c)*sum4 - 2*c*sum5)*(sum1 - c*sum2 + c*sum4 - sum5);
      double aa =  sqr(sum1 - c*sum2 + c*sum4 - sum5)*(-sum3 - sqr(c)*sum4 + sqr(sum1 - c*sum2 + c*sum4 - sum5) + 2*c*sum5);      
      double dis = sqr(bb)-4.*aa*cc;
      if(dis>0.) {
	dis = sqrt(dis);
	return make_pair(alpha,make_pair(0.5*(-bb+dis)/aa,-0.5*(-bb-dis)/aa));
      }
      else {
	return make_pair(alpha,make_pair(0.,0.));
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      normalize(_h_xi ,1.,false);
      normalize(_h_xiB,1.,false);
      Scatter2DPtr _h_alpha_xi;
      book(_h_alpha_xi, 2,1,1);
      pair<double,pair<double,double> > alpha = calcAlpha(_h_xi);
      _h_alpha_xi->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
			    make_pair(alpha.second.first,alpha.second.second) );
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h_xi,_h_xiB;
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BESIII_2021_I1921775);

}