rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BESIII_2018_I1693610

Mass distributions in the decays $D^0\to K^-\pi^+\eta^\prime$, $D^0\to K^0_S\pi^0\eta^\prime$, $D^+\to K^0_S\pi^+\eta^\prime$
Experiment: BESIII (BEPC)
Inspire ID: 1693610
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 98 (2018) 9, 092009
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing D0 or D+ mesons

Measurement of the mass distributions in the decays $D^0\to K^-\pi^+\eta^\prime$, $D^0\to K^0_S\pi^0\eta^\prime$, $D^+\to K^0_S\pi^+\eta^\prime$ by BES. The data were read from the plots in the paper and therefore for some points the error bars are the size of the point. It is also not clear that any resolution effects have been unfolded.

Source code: BESIII_2018_I1693610.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief  D -> eta' decays
  class BESIII_2018_I1693610 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2018_I1693610);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==411||
						Cuts::abspid==421);
      declare(ufs, "UFS");
      DecayedParticles DD(ufs);
      DD.addStable(PID::PI0);
      DD.addStable(PID::K0S);
      DD.addStable(PID::ETA);
      DD.addStable(PID::ETAPRIME);
      declare(DD, "DD");
      // histograms
      for(unsigned int ix=0;ix<9;++ix)
	book(_h[ix],1,1,1+ix);
      for(unsigned int ix=0;ix<3;++ix)
	book(_dalitz[ix],"dalitz_"+toString(ix+1),50,0.4,0.9,50,1.1,1.9);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // define the decay modes
      static const map<PdgId,unsigned int> & mode1   = { {-321,1},{ 211,1}, { 331,1}};
      static const map<PdgId,unsigned int> & mode1CC = { { 321,1},{-211,1}, { 331,1}};
      static const map<PdgId,unsigned int> & mode2   = { { 310,1},{ 111,1}, { 331,1}};
      static const map<PdgId,unsigned int> & mode3   = { { 310,1},{ 211,1}, { 331,1}};
      static const map<PdgId,unsigned int> & mode3CC = { { 310,1},{-211,1}, { 331,1}};
      DecayedParticles DD = apply<DecayedParticles>(event, "DD");
      // loop over particles
      for(unsigned int ix=0;ix<DD.decaying().size();++ix) {
	// D0 -> K- pi+ omega
	if( (DD.decaying()[ix].pid()== 421 && DD.modeMatches(ix,3,mode1)) ||
	    (DD.decaying()[ix].pid()==-421 && DD.modeMatches(ix,3,mode1CC))) {
	  int sign = DD.decaying()[ix].pid()/421;
	  const Particles & pip  = DD.decayProducts()[ix].at( sign*211);
	  const Particles & Km   = DD.decayProducts()[ix].at(-sign*321);
	  const Particles & etaP = DD.decayProducts()[ix].at(331);
	  double mKpi    = (pip[0].momentum()+Km[0].momentum()).mass2();
	  double mpietaP = (pip[0].momentum()+etaP[0].momentum()).mass2();
	  _dalitz[0]->fill(mKpi,mpietaP);
	  _h[0]->fill(sqrt(mKpi));
	  _h[1]->fill((Km[0].momentum()+etaP[0].momentum()).mass());
	  _h[2]->fill(sqrt(mpietaP));
	}
	// D0 -> KS0 pi0 etaP
	else if (DD.decaying()[ix].abspid()==421 && DD.modeMatches(ix,3,mode2)) {
	  const Particles & pi0  = DD.decayProducts()[ix].at(111);
	  const Particles & KS0  = DD.decayProducts()[ix].at(310);
	  const Particles & etaP = DD.decayProducts()[ix].at(331);
	  double mKpi    = (pi0[0].momentum()+KS0[0].momentum()).mass2();
	  double mpietaP = (pi0[0].momentum()+etaP[0].momentum()).mass2();
	  _dalitz[1]->fill(mKpi,mpietaP);
	  _h[3]->fill(sqrt(mKpi));
	  _h[4]->fill((KS0[0].momentum()+etaP[0].momentum()).mass());
	  _h[5]->fill(sqrt(mpietaP));
	}
	// D0 -> K- pi+ etaP
	else if( (DD.decaying()[ix].pid()== 411 && DD.modeMatches(ix,3,mode3)) ||
		 (DD.decaying()[ix].pid()==-411 && DD.modeMatches(ix,3,mode3CC))) {
	  int sign = DD.decaying()[ix].pid()/411;
	  const Particles & pip  = DD.decayProducts()[ix].at( sign*211);
	  const Particles & KS0  = DD.decayProducts()[ix].at(310);
	  const Particles & etaP = DD.decayProducts()[ix].at(331);
	  double mKpi    = (pip[0].momentum()+KS0[0].momentum()).mass2();
	  double mpietaP = (pip[0].momentum()+etaP[0].momentum()).mass2();
	  _dalitz[2]->fill(mKpi,mpietaP);
	  _h[6]->fill(sqrt(mKpi));
	  _h[7]->fill((KS0[0].momentum()+etaP[0].momentum()).mass());
	  _h[8]->fill(sqrt(mpietaP));
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<9;++ix)
	normalize(_h[ix],1.,false);
      for(unsigned int ix=0;ix<3;++ix)
	normalize(_dalitz[ix]);
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h[9];
    Histo2DPtr _dalitz[3];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BESIII_2018_I1693610);

}