Rivet analyses referenceBESIII_2015_I1376282Mass and angular distributions in $J/\psi\to\gamma K^0_SK^0_S\eta$ decaysExperiment: BESIII (BEPC) Inspire ID: 1376282 Status: VALIDATED NOHEPDATA Authors:
Beam energies: (1.6, 1.6) GeV Run details:
Measurement of mass and angular distributions in $J/\psi\to\gamma K^0_SK^0_S\eta$ decays. Source code: BESIII_2015_I1376282.cc 1// -*- C++ -*-
2#include "Rivet/Analysis.hh"
3#include "Rivet/Projections/Beam.hh"
4#include "Rivet/Projections/UnstableParticles.hh"
5#include "Rivet/Projections/DecayedParticles.hh"
6
7namespace Rivet {
8
9
10 /// @brief J/psi -> gamma eta KS0,KS0
11 class BESIII_2015_I1376282 : public Analysis {
12 public:
13
14 /// Constructor
15 RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2015_I1376282);
16
17
18 /// @name Analysis methods
19 /// @{
20
21 /// Book histograms and initialise projections before the run
22 void init() {
23 // Initialise and register projections
24 UnstableParticles ufs = UnstableParticles(Cuts::abspid==443);
25 declare(ufs, "UFS");
26 DecayedParticles PSI(ufs);
27 PSI.addStable(PID::K0S);
28 PSI.addStable(PID::ETA);
29 declare(PSI, "PSI");
30 declare(Beam(), "Beams");
31 // Book histograms
32 for(unsigned int ix=0;ix<6;++ix)
33 book(_h[ix],1,1,1+ix);
34 }
35
36 // angle cuts due regions of BES calorimeter
37 bool vetoPhoton(const double & cTheta) {
38 return cTheta>0.92 || (cTheta>0.8 && cTheta<0.86);
39 }
40
41 /// Perform the per-event analysis
42 void analyze(const Event& event) {
43 // get the axis, direction of incoming electron
44 const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
45 Vector3 axis;
46 if(beams.first.pid()>0)
47 axis = beams.first .momentum().p3().unit();
48 else
49 axis = beams.second.momentum().p3().unit();
50 // find the J/psi decays
51 static const map<PdgId,unsigned int> & mode = { { 221,1}, { 310,2},{ 22,1}};
52 DecayedParticles PSI = apply<DecayedParticles>(event, "PSI");
53 if( PSI.decaying().size()!=1) vetoEvent;
54 if(!PSI.modeMatches(0,4,mode)) vetoEvent;
55 const Particle & eta = PSI.decayProducts()[0].at(221)[0];
56 const Particles & K0 = PSI.decayProducts()[0].at(310);
57 const Particle & gam = PSI.decayProducts()[0].at( 22)[0];
58 _h[0]->fill((K0[0].momentum()+K0[1].momentum()+eta.momentum()).mass());
59 _h[1]->fill((K0[0].momentum()+K0[1].momentum()).mass());
60 for(unsigned int ix=0;ix<2;++ix)
61 _h[2]->fill((K0[ix].momentum()+eta.momentum()).mass());
62 double cTheta = axis.dot(gam.p3().unit());
63 // photon angle
64 if(vetoPhoton(abs(cTheta))) vetoEvent;
65 _h[3]->fill(cTheta);
66 // remaining angles
67 LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(PSI.decaying()[0].momentum().betaVec());
68 FourMomentum pGamma = boost1.transform(gam.momentum());
69 FourMomentum pHadron = boost1.transform(K0[0].momentum()+K0[1].momentum()+eta.momentum());
70 LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pHadron.betaVec());
71 Vector3 axis1 = pGamma.p3().unit();
72 Vector3 axis2 = boost2.transform(boost1.transform(eta.momentum())).p3().unit();
73 _h[4]->fill(axis1.dot(axis2));
74 FourMomentum pKK = boost2.transform(boost1.transform(K0[0].momentum()+K0[1].momentum()));
75 axis2 = pKK.p3().unit();
76 LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pKK.betaVec());
77 for(unsigned ix=0;ix<2;++ix) {
78 Vector3 axis3 = boost3.transform(boost2.transform(boost1.transform(K0[ix].momentum()))).p3().unit();
79 _h[5]->fill(axis3.dot(axis2));
80 }
81 }
82
83
84 /// Normalise histograms etc., after the run
85 void finalize() {
86 for(unsigned int ix=0;ix<6;++ix)
87 normalize(_h[ix],1.,false);
88 }
89
90 /// @}
91
92 /// @name Histograms
93 /// @{
94 Histo1DPtr _h[6];
95 /// @}
96
97
98 };
99
100
101 RIVET_DECLARE_PLUGIN(BESIII_2015_I1376282);
102
103}
|