rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BESIII_2013_I1203841

Mass and angular distributions in $J/\psi\to\gamma\omega\phi$ decays
Experiment: BESIII (BEPC)
Inspire ID: 1203841
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 87 (2013) 3, 032008
Beams: e- e+
Beam energies: (1.6, 1.6) GeV
Run details:
  • e+e- > J/psi

Measurement of mass and angular distributions in $J/\psi\to\gamma\omega\phi$ decays.

Source code: BESIII_2013_I1203841.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief J/psi -> gamma omega omega
  class BESIII_2013_I1203841 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2013_I1203841);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==443);
      declare(ufs, "UFS");
      DecayedParticles PSI(ufs);
      PSI.addStable(PID::PHI);
      PSI.addStable(PID::OMEGA);
      declare(PSI, "PSI");
      declare(Beam(), "Beams");
      // histograms
      for(unsigned int ix=0;ix<9;++ix)
	book(_h[ix],1,1,1+ix);
    }

    // angle cuts due regions of BES calorimeter
    bool vetoPhoton(const double & cTheta) {
      return cTheta>0.92 || (cTheta>0.8 && cTheta<0.86);
    }
    
    void findChildren(const Particle & p, Particles & pim, Particles & pip,
		      Particles & pi0, unsigned int &ncount) {
      for( const Particle &child : p.children()) {
	if(child.pid()==PID::PIPLUS) {
	  pip.push_back(child);
	  ncount+=1;
	}
	else if(child.pid()==PID::PIMINUS) {
	  pim.push_back(child);
	  ncount+=1;
	}
	else if(child.pid()==PID::PI0) {
	  pi0.push_back(child);
	  ncount+=1;
	}
	else if(child.children().empty()) {
	  ncount+=1;
	}
    	else
    	  findChildren(child,pim,pip,pi0,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis;
      if(beams.first.pid()>0)
	axis = beams.first .momentum().p3().unit();
      else
	axis = beams.second.momentum().p3().unit();
      // find the J/psi decays
      static const map<PdgId,unsigned int> & mode = { { 223,1}, { 333,1},{ 22,1}};
      DecayedParticles PSI = apply<DecayedParticles>(event, "PSI");
      if( PSI.decaying().size()!=1) vetoEvent;
      if(!PSI.modeMatches(0,3,mode)) vetoEvent;
      // particles
      const Particle & phi   = PSI.decayProducts()[0].at(333)[0];
      const Particle & omega = PSI.decayProducts()[0].at(223)[0];
      const Particle & gam   = PSI.decayProducts()[0].at( 22)[0];
      _h[0]->fill((omega.momentum()+phi.momentum()).mass());
      _h[1]->fill((omega.momentum()+gam.momentum()).mass());
      _h[2]->fill((phi  .momentum()+gam.momentum()).mass());
      double cTheta = axis.dot(gam.p3().unit());
      if(vetoPhoton(abs(cTheta))) vetoEvent;
      _h[3]->fill(cTheta);
      // remaining angles
      LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(PSI.decaying()[0].momentum().betaVec());
      FourMomentum pGamma    = boost1.transform(gam.momentum());
      FourMomentum pOmegaPhi = boost1.transform(omega.momentum()+phi.momentum());
      Vector3 e1z = pGamma.p3().unit();
      Vector3 e1y = e1z.cross(axis).unit();
      Vector3 e1x = e1y.cross(e1z).unit();
      LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pOmegaPhi.betaVec());
      Vector3 axis2 = boost2.transform(boost1.transform(phi.momentum())).p3().unit();
      _h[5]->fill(e1z.dot(axis2));
      double phiPhi = atan2(axis2.dot(e1y),axis2.dot(e1x));
      if(phiPhi<0.) phiPhi+=2.*M_PI;
      _h[7]->fill(phiPhi);
      // now for the phi decays
      if(phi.children().size()!=2|| phi.children()[0].pid()!=-phi.children()[1].pid() ||
	 phi.children()[0].abspid()!=321) vetoEvent;
      Particle Km = phi.children()[0];
      Particle Kp = phi.children()[1];
      if(Kp.pid()<0) swap(Km,Kp);
      FourMomentum pKp  = boost2.transform(boost1.transform(Kp.momentum()));
      FourMomentum pPhi = boost2.transform(boost1.transform(phi.momentum()));
      LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pPhi.betaVec());
      pKp = boost3.transform(pKp);
      double cK = axis2.dot(pKp.p3().unit());
      _h[6]->fill(cK);
      // omega decay
      unsigned int ncount=0;
      Particles pip,pim,pi0;
      findChildren(omega,pim,pip,pi0,ncount);
      if( ncount!=3 || !(pim.size()==1 && pip.size()==1 && pi0.size()==1)) vetoEvent;
      // boost to omega/phi frame
      FourMomentum ppip = boost2.transform(boost1.transform(pip[0].momentum()));
      FourMomentum ppim = boost2.transform(boost1.transform(pim[0].momentum()));
      FourMomentum pOmega = boost2.transform(boost1.transform(omega.momentum()));
      LorentzTransform boost4 = LorentzTransform::mkFrameTransformFromBeta(pOmega.betaVec());
      Vector3 axisZ = pOmega.p3().unit();
      ppip = boost4.transform(ppip);
      ppim = boost4.transform(ppim);
      Vector3 norm = ppip.p3().cross(ppim.p3()).unit();
      double cOmega = norm.dot(axisZ);
      _h[4]->fill(cOmega);
      // angle between planes
      Vector3 Trans1 = pKp.p3() - cK*pKp.p3().mod()*axis2;
      Vector3 Trans2 = norm     - cOmega*axisZ;
      double chi = atan(Trans1.cross(Trans2).dot(axis2)/Trans1.dot(Trans2));
      _h[8]->fill(abs(chi)/M_PI*180.);
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<9;++ix)
	normalize(_h[ix],1.,false);
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h[9];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BESIII_2013_I1203841);

}