|
Rivet analyses reference
BESIII_2011_I931195
Analysis of $\psi(2S)\to\gamma\chi_{c(0,2)}$ decays using $\chi_{c(0,2)}\to \pi^+\pi^-/K^+K^-$
Experiment: BESIII (BEPC)
Inspire ID: 931195
Status: VALIDATED NOHEPDATA
Authors:
References:
- Phys.Rev.D 84 (2011) 092006
Beams: e- e+
Beam energies: (1.8, 1.8) GeV
Run details:
Analysis of the angular distribution of the photons and mesons produced in $e^+e^-\to \psi(2S) \to \gamma\chi_{c(0,2)}$ followed by $\chi_{c(0,2)}\to \pi^+\pi^-/K^+K^-$. Gives information about the decay and is useful for testing correlations in charmonium decays. N.B. the distributions were read from the figures in the paper and are not corrected and should only be used qualatively, however the $x$ and $y$ and multipole results are fully corrected.
Source code:
BESIII_2011_I931195.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief psi(2S) -> gamma chi_c0,2
class BESIII_2011_I931195 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2011_I931195);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(UnstableParticles(Cuts::pid==10441 || Cuts::pid==445), "UFS");
declare(FinalState(), "FS");
for(unsigned int ichi=0;ichi<2;++ichi) {
for(unsigned int imeson=0;imeson<2;++imeson) {
book(_h_thy[ichi][imeson][0],"TMP/h_"+toString(ichi+1)+"_"+toString(imeson+1)+"_gamma",50,-1.,1.);
book(_h_thy[ichi][imeson][1],"TMP/h_"+toString(ichi+1)+"_"+toString(imeson+1)+"_meson",50,-1.,1.);
book(_h_thy[ichi][imeson][2],"TMP/h_"+toString(ichi+1)+"_"+toString(imeson+1)+"_phi" ,50,0.,2.*M_PI);
for(unsigned int iy=0;iy<3;++iy)
book(_h_exp[ichi][imeson][iy],5+ichi,1+imeson,1+iy);
}
}
for(unsigned int ix=0;ix<3;++ix)
for(unsigned int iy=0;iy<3;++iy)
book(_c[ix][iy],"TMP/c_"+toString(ix+1)+"_"+toString(iy+1));
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for( const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const double cos20=0.9396926207859084;
// get the axis, direction of incoming electron
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
Vector3 axis;
if(beams.first.pid()>0)
axis = beams.first .momentum().p3().unit();
else
axis = beams.second.momentum().p3().unit();
// types of final state particles
const FinalState& fs = apply<FinalState>(event, "FS");
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// loop over chi_c states
Particle chi;
bool matched = false;
const UnstableParticles & ufs = apply<UnstableParticles>(event, "UFS");
for (const Particle& p : ufs.particles()) {
if(p.children().empty()) continue;
map<long,int> nRes=nCount;
int ncount = ntotal;
findChildren(p,nRes,ncount);
if(ncount==1) {
matched = true;
for(auto const & val : nRes) {
if(val.first==PID::PHOTON) {
if(val.second!=1) {
matched = false;
break;
}
}
else if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
chi=p;
break;
}
}
}
if(!matched) vetoEvent;
// have chi_c find psi2S
if(chi.parents().empty() || chi.children().size()!=2 ||
chi.children()[0].pid() != -chi.children()[1].pid()) vetoEvent;
Particle psi2S = chi.parents()[0];
if(psi2S.pid()!=100443 || psi2S.children().size()!=2) vetoEvent;
// then the first photon
Particle gamma1;
if(psi2S.children()[0].pid()==PID::PHOTON)
gamma1 = psi2S.children()[0];
else if(psi2S.children()[1].pid()==PID::PHOTON)
gamma1 = psi2S.children()[1];
else
vetoEvent;
// now the decay products of the chi_c
Particle mPlus,mMinus;
bool foundMeson=false;
for(unsigned int ix=0;ix<2;++ix) {
if(chi.children()[ix].pid()==PID::PIPLUS ||
chi.children()[ix].pid()==PID::KPLUS ) {
foundMeson=true;
mPlus=chi.children()[ix];
}
else if(chi.children()[ix].pid()==PID::PIMINUS ||
chi.children()[ix].pid()==PID::KMINUS ) {
mMinus=chi.children()[ix];
}
}
if(!foundMeson) vetoEvent;
// cut on photon angles
Vector3 aGamma = gamma1.p3().unit();
double cGammaCut = abs(axis.dot(aGamma));
// type chi state
unsigned int ichi= chi.pid()==445 ? 0 : 1;
// type of meson
unsigned int imeson = mPlus.pid()==PID::PIPLUS ? 0 : 1;
// first angle of gamma1 w.r.t beam
double cGamma = axis.dot(gamma1.momentum().p3().unit());
_h_thy[ichi][imeson][0]->fill(cGamma);
// axis in the chi frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(chi.momentum().betaVec());
Vector3 e1z = gamma1.momentum().p3().unit();
Vector3 e1y = e1z.cross(axis).unit();
Vector3 e1x = e1y.cross(e1z).unit();
FourMomentum pMeson = boost1.transform(mPlus.momentum());
Vector3 axis1 = pMeson.p3().unit();
double cMeson = e1z.dot(axis1);
_h_thy[ichi][imeson][1]->fill(cMeson);
double phi = atan2(e1y.dot(axis1),e1x.dot(axis1))+M_PI;
_h_thy[ichi][imeson][2]->fill(phi);
// moments to extract multipoles for chi_c2
if(ichi==0) {
double sGamma = sqrt(1.-sqr(cGamma));
double sMeson = sqrt(1.-sqr(cMeson));
double a3 = -3./sqrt(2.)*cos(phi)*sqr(sMeson)*2.*sMeson*cMeson*2.*sGamma*cGamma;
double a4 = sqrt(3.)*(3.*sqr(cMeson)-1.)*cos(phi)*2.*sMeson*cMeson*2.*sGamma*cGamma;
double a5 = sqrt(3./2.)*(3.*sqr(cMeson)-1.)*sqr(sGamma)*sqr(sMeson)*(2.*sqr(cos(phi))-1.);
_c[imeson][0]->fill(a3);
_c[imeson][1]->fill(a4);
_c[imeson][2]->fill(a5);
_c[2][0]->fill(a3);
_c[2][1]->fill(a4);
_c[2][2]->fill(a5);
}
// now fill experimental plots with cuts
if(cGammaCut>0.92 || (cGammaCut>0.8 && cGammaCut<0.86)) vetoEvent;
// cut on charged particles
if(abs(axis.dot(mPlus .p3().unit()))>0.93) vetoEvent;
if(abs(axis.dot(mMinus.p3().unit()))>0.93) vetoEvent;
// cut on angle of photon w.r.t. charged particles
if(abs(aGamma.dot(mPlus .p3().unit()))>cos20) vetoEvent;
if(abs(aGamma.dot(mMinus.p3().unit()))>cos20) vetoEvent;
// fill histos
_h_exp[ichi][imeson][0]->fill(cGamma);
_h_exp[ichi][imeson][1]->fill(cMeson);
_h_exp[ichi][imeson][2]->fill(phi);
}
/// Normalise histograms etc., after the run
void finalize() {
// first normalize the histograms
for(unsigned int ichi=0;ichi<2;++ichi) {
for(unsigned int imeson=0;imeson<2;++imeson) {
for(unsigned int iy=0;iy<3;++iy) {
normalize(_h_thy[ichi][imeson][iy]);
normalize(_h_exp[ichi][imeson][iy]);
}
}
}
// extract the x and y values
double x,y;
pair<double,double> dx,dy;
for(unsigned int ix=0;ix<3;++ix) {
Scatter1D X = *_c[ix][0]/ *_c[ix][2];
Scatter1D Y = *_c[ix][0]/ *_c[ix][1];
x = X.point(0).x();
y = Y.point(0).x();
dx = X.point(0).xErrs();
dy = Y.point(0).xErrs();
Scatter2DPtr mult;
book(mult, 1+ix, 1, 1);
mult->addPoint(0.5,x,make_pair(0.5,0.5),dx);
book(mult, 1+ix, 1, 2);
mult->addPoint(0.5,y,make_pair(0.5,0.5),dy);
}
// convert x and y to M1 and E2
double M1 = (3*sqrt(10) + sqrt(30)*x - 2*sqrt(15)*y)/(3.*(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y));
double E2 = (2*(2*sqrt(3) - 5*sqrt(2)*y - 2*sqrt(3)*sqr(y) + 4*x*(-1 + sqrt(6)*y)))/
((sqrt(6) - 6*y)*(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y));
double e1 = (-4*sqrt(1.6666666666666667) + 4*sqrt(10)*y)/sqr(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y);
double e2 = (-4*sqrt(3.3333333333333335)*(2 + sqrt(3)*x))/sqr(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y);
double e3 = (20*(-sqrt(2) + y*(sqrt(3) + 3*sqrt(2)*y)))/((sqrt(6) - 6*y)*sqr(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y));
double e4 = (-10*(sqrt(6) - 3*sqrt(2)*x))/(3.*sqr(sqrt(2) + sqrt(6)*x + 2*sqrt(3)*y));
pair<double,double> dM1 = make_pair(sqrt(sqr(e1*dx.first)+sqr(e2*dy.first)),sqrt(sqr(e1*dx.first)+sqr(e2*dy.first)));
pair<double,double> dE2 = make_pair(sqrt(sqr(e3*dx.first)+sqr(e4*dy.first)),sqrt(sqr(e3*dx.first)+sqr(e4*dy.first)));
Scatter2DPtr mult;
book(mult, 4, 1, 1);
mult->addPoint(0.5,M1,make_pair(0.5,0.5),dM1);
book(mult, 4, 1, 2);
mult->addPoint(0.5,E2,make_pair(0.5,0.5),dE2);
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_exp[2][2][3], _h_thy[2][2][3];
CounterPtr _c[3][3];
/// @}
};
RIVET_DECLARE_PLUGIN(BESIII_2011_I931195);
}
|
|