|
Rivet analyses reference
BELLE_2022_I2140379
Decay asymmetries in $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta^\prime$
Experiment: BELLE (KEKB)
Inspire ID: 2140379
Status: VALIDATED NOHEPDATA SINGLEWEIGHT
Authors:
References:
Beams: * *
Beam energies: ANY
Run details:
- Any process producing Lambda_c baryons
Decay asymmetries in $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta^\prime$
Source code:
BELLE_2022_I2140379.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Lambda_c -> Sigma+ pi0,eta,eta' decay asymmetries
class BELLE_2022_I2140379 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2022_I2140379);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS" );
// histograms
for(unsigned int ix=0;ix<3;++ix)
book(_h[ix],2,1,1+ix);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// loop over Lambda_c baryons
for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
int sign = Lambdac.pid()/4122;
if(Lambdac.children().size()!=2) continue;
Particle baryon1;
int imeson=-1;
if(Lambdac.children()[0].pid()==sign*3222 &&
Lambdac.children()[1].pid()==111) {
baryon1 = Lambdac.children()[0];
imeson=0;
}
else if(Lambdac.children()[1].pid()==sign*3222 &&
Lambdac.children()[0].pid()==111) {
baryon1 = Lambdac.children()[1];
imeson=0;
}
else if(Lambdac.children()[0].pid()==sign*3222 &&
Lambdac.children()[1].pid()==221) {
baryon1 = Lambdac.children()[0];
imeson=1;
}
else if(Lambdac.children()[1].pid()==sign*3222 &&
Lambdac.children()[0].pid()==221) {
baryon1 = Lambdac.children()[1];
imeson=1;
}
else if(Lambdac.children()[0].pid()==sign*3222 &&
Lambdac.children()[1].pid()==331) {
baryon1 = Lambdac.children()[0];
imeson=2;
}
else if(Lambdac.children()[1].pid()==sign*3222 &&
Lambdac.children()[0].pid()==331) {
baryon1 = Lambdac.children()[1];
imeson=2;
}
else
continue;
Particle baryon2;
if(baryon1.children()[0].pid()== sign*2212 &&
baryon1.children()[1].pid()== 111) {
baryon2 = baryon1.children()[0];
}
else if(baryon1.children()[1].pid()== sign*2212 &&
baryon1.children()[0].pid()== 111) {
baryon2 = baryon1.children()[1];
}
else
continue;
// first boost to the Lambdac rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
// to sigma+ rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
Vector3 axis = pbaryon1.p3().unit();
FourMomentum pp = boost2.transform(pbaryon2);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
_h[imeson]->fill(cTheta);
}
}
pair<double,double> calcAlpha(Histo1DPtr hist) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai = 0.5*(bin.xMax()-bin.xMin());
double bi = 0.5*ai*(bin.xMax()+bin.xMin());
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
pair<double,double> aSigma(-.983,0.013);
for(unsigned int ix=0;ix<3;++ix) {
normalize(_h[ix]);
Scatter2DPtr _h_alpha1;
book(_h_alpha1,1,1+ix,1);
pair<double,double> alpha = calcAlpha(_h[ix]);
_h_alpha1->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
// divide out alpha Sigma
alpha.second = alpha.first/aSigma.first*
sqrt(sqr(alpha.second/alpha.first) + sqr(aSigma.second/aSigma.first));
alpha.first /= aSigma.first;
Scatter2DPtr _h_alpha2;
book(_h_alpha2,1,1+ix,2);
_h_alpha2->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h[3];
/// @}
};
RIVET_DECLARE_PLUGIN(BELLE_2022_I2140379);
}
|
|