|
Rivet analyses reference
BELLE_2022_I2138841
Decay asymmetries in $\Lambda_c^+ \to \Lambda^0 (\pi,K)^+$ and $\Lambda_c^+ \to \Sigma^0 (\pi,K)^+$
Experiment: BELLE (KEKB)
Inspire ID: 2138841
Status: VALIDATED NOHEPDATA SINGLEWEIGHT
Authors:
References:
Beams: * *
Beam energies: ANY
Run details:
- Any process producing Lambda_c baryons
Decay asymmetries in $\Lambda_c^+ \to \Lambda^0 (\pi,K)^+$ and $\Lambda_c^+ \to \Sigma^0 (\pi,K)^+$
Source code:
BELLE_2022_I2138841.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Lambda_c -> Lambda0 or Sigma0 + (pi,K)+ decay asymmetries
class BELLE_2022_I2138841 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2022_I2138841);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS" );
for(unsigned int imode=0;imode<4;++imode) {
if(imode<2) {
book(_h[imode][0],3,1,1+imode);
for(unsigned int iy=0;iy<2;++iy)
book(_h[imode][1+iy],4,1,1+iy+2*imode);
}
for(unsigned int iy=0;iy<3;++iy)
for(unsigned int iz=0;iz<2;++iz)
book(_c[imode][iy][iz],"TMP/C_"+toString(imode+1)+"_"+toString(iy+1)+"_"+toString(iz+1));
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// loop over Lambda_c baryons
for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
int sign = Lambdac.pid()/4122;
if(Lambdac.children().size()!=2) continue;
Particle baryon1;
int imeson=-1;
if((Lambdac.children()[0].pid()==sign*3122 ||
Lambdac.children()[0].pid()==sign*3212) &&
Lambdac.children()[1].pid()==sign*321) {
baryon1 = Lambdac.children()[0];
imeson=0;
}
else if((Lambdac.children()[1].pid()==sign*3122 ||
Lambdac.children()[0].pid()==sign*3212) &&
Lambdac.children()[0].pid()==sign*321) {
baryon1 = Lambdac.children()[1];
imeson=0;
}
else if((Lambdac.children()[0].pid()==sign*3122 ||
Lambdac.children()[0].pid()==sign*3212) &&
Lambdac.children()[1].pid()==sign*211) {
baryon1 = Lambdac.children()[0];
imeson=1;
}
else if((Lambdac.children()[1].pid()==sign*3122 ||
Lambdac.children()[0].pid()==sign*3212) &&
Lambdac.children()[0].pid()==sign*211) {
baryon1 = Lambdac.children()[1];
imeson=1;
}
else
continue;
// Lambda0 case
if(baryon1.abspid()==3122) {
Particle baryon2;
if(baryon1.children()[0].pid()== sign*2212 &&
baryon1.children()[1].pid()==-sign*211) {
baryon2 = baryon1.children()[0];
}
else if(baryon1.children()[1].pid()== sign*2212 &&
baryon1.children()[0].pid()==-sign*211) {
baryon2 = baryon1.children()[1];
}
else
continue;
// first boost to the Lambdac rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
// to lambda rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
Vector3 axis = pbaryon1.p3().unit();
FourMomentum pp = boost2.transform(pbaryon2);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
_h[imeson][0]->fill(cTheta);
_c[imeson][0][0]->fill();
_c[imeson][0][1]->fill(3.*cTheta);
if(baryon1.pid()>0) {
_h[imeson][1]->fill(cTheta);
_c[imeson][1][0]->fill();
_c[imeson][1][1]->fill(3.*cTheta);
}
else {
_h[imeson][2]->fill(cTheta);
_c[imeson][2][0]->fill();
_c[imeson][2][1]->fill(3.*cTheta);
}
}
// sigma0 case
else {
Particle baryon2;
if(baryon1.children()[0].pid()== sign*3122 &&
baryon1.children()[1].pid()== 22) {
baryon2 = baryon1.children()[0];
}
else if(baryon1.children()[1].pid()== sign*3122 &&
baryon1.children()[0].pid()== 22) {
baryon2 = baryon1.children()[1];
}
else
continue;
Particle baryon3;
if(baryon2.children()[0].pid()== sign*2212 &&
baryon2.children()[1].pid()==-sign*211) {
baryon3 = baryon2.children()[0];
}
else if(baryon2.children()[1].pid()== sign*2212 &&
baryon2.children()[0].pid()==-sign*211) {
baryon3 = baryon2.children()[1];
}
else
continue;
// first boost to the Lambdac rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
FourMomentum pbaryon3 = boost1.transform(baryon3.momentum());
// to sigma rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
Vector3 axis = pbaryon1.p3().unit();
FourMomentum pp = boost2.transform(pbaryon2);
FourMomentum pp3 = boost2.transform(pbaryon3);
// calculate angle
double cTheta2 = pp.p3().unit().dot(axis);
// to lambda rest frame
LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pp.betaVec());
Vector3 axis2 = pp.p3().unit();
FourMomentum pp4 = boost3.transform(pp3);
// calculate angle
double cTheta3 = pp4.p3().unit().dot(axis2);
double cTheta = cTheta2*cTheta3;
_c[imeson+2][0][0]->fill();
_c[imeson+2][0][1]->fill(-9.*cTheta);
if(baryon1.pid()>0) {
_c[imeson+2][1][0]->fill();
_c[imeson+2][1][1]->fill(-9.*cTheta);
}
else {
_c[imeson+2][2][0]->fill();
_c[imeson+2][2][1]->fill(-9.*cTheta);
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
pair<double,double> aLambda(0.7542,0.0022);
for(int imeson=0;imeson<4;++imeson) {
for(int iy=0;iy<3;++iy) {
if(imeson<2) normalize(_h[imeson][iy]);
Scatter1D R = *_c[imeson][iy][1]/ *_c[imeson][iy][0];
Scatter2DPtr _h_alpha1,_h_alpha2;
if(iy==0) {
book(_h_alpha1,1,1+imeson,1);
book(_h_alpha2,1,1+imeson,2);
}
else {
book(_h_alpha1,2,1+imeson,iy);
book(_h_alpha2,2,1+imeson,2+iy);
}
double rval = R.point(0).x();
pair<double,double> rerr = R.point(0).xErrs();
_h_alpha1->addPoint(0.5, rval, make_pair(0.5,0.5), rerr );
// divide out aLambda
rerr.first = sqrt(sqr(rerr.first /rval) + sqr(aLambda.second/aLambda.first));
rerr.second = sqrt(sqr(rerr.second/rval) + sqr(aLambda.second/aLambda.first));
rval /= aLambda.first;
rerr.first *= rval;
rerr.second *= rval;
if(iy==2) {
rval *=-1;
swap(rerr.first,rerr.second);
}
_h_alpha2->addPoint(0.5, rval, make_pair(0.5,0.5), rerr );
}
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h[2][3];
CounterPtr _c[4][3][2];
/// @}
};
RIVET_DECLARE_PLUGIN(BELLE_2022_I2138841);
}
|
|