rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BELLE_2022_I2138841

Decay asymmetries in $\Lambda_c^+ \to \Lambda^0 (\pi,K)^+$ and $\Lambda_c^+ \to \Sigma^0 (\pi,K)^+$
Experiment: BELLE (KEKB)
Inspire ID: 2138841
Status: VALIDATED NOHEPDATA SINGLEWEIGHT
Authors:
  • Peter Richardson
References: Beams: * *
Beam energies: ANY
Run details:
  • Any process producing Lambda_c baryons

Decay asymmetries in $\Lambda_c^+ \to \Lambda^0 (\pi,K)^+$ and $\Lambda_c^+ \to \Sigma^0 (\pi,K)^+$

Source code: BELLE_2022_I2138841.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Lambda_c -> Lambda0 or Sigma0 + (pi,K)+ decay asymmetries
  class BELLE_2022_I2138841 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2022_I2138841);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );
      for(unsigned int imode=0;imode<4;++imode) {
	if(imode<2) {
	  book(_h[imode][0],3,1,1+imode);
	  for(unsigned int iy=0;iy<2;++iy)
	    book(_h[imode][1+iy],4,1,1+iy+2*imode);
	}
	for(unsigned int iy=0;iy<3;++iy)
	  for(unsigned int iz=0;iz<2;++iz)
	    book(_c[imode][iy][iz],"TMP/C_"+toString(imode+1)+"_"+toString(iy+1)+"_"+toString(iz+1));
      }
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Lambda_c baryons
      for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
	int sign = Lambdac.pid()/4122;
	if(Lambdac.children().size()!=2) continue;
	Particle baryon1;
	int imeson=-1;
	if((Lambdac.children()[0].pid()==sign*3122 ||
	    Lambdac.children()[0].pid()==sign*3212) && 
	   Lambdac.children()[1].pid()==sign*321) {
	  baryon1 = Lambdac.children()[0];
	  imeson=0;
	}
	else if((Lambdac.children()[1].pid()==sign*3122 ||
		 Lambdac.children()[0].pid()==sign*3212) && 
		Lambdac.children()[0].pid()==sign*321) {
	  baryon1 = Lambdac.children()[1];
	  imeson=0;
	}
	else if((Lambdac.children()[0].pid()==sign*3122 ||
		 Lambdac.children()[0].pid()==sign*3212) && 
		Lambdac.children()[1].pid()==sign*211) {
	  baryon1 = Lambdac.children()[0];
	  imeson=1;
	}
	else if((Lambdac.children()[1].pid()==sign*3122 ||
		 Lambdac.children()[0].pid()==sign*3212) && 
		Lambdac.children()[0].pid()==sign*211) {
	  baryon1 = Lambdac.children()[1];
	  imeson=1;
	}
	else
	  continue;
	// Lambda0 case
	if(baryon1.abspid()==3122) {
	  Particle baryon2;
	  if(baryon1.children()[0].pid()== sign*2212 && 
	     baryon1.children()[1].pid()==-sign*211) {
	    baryon2 = baryon1.children()[0];
	  }
	  else if(baryon1.children()[1].pid()== sign*2212 && 
		  baryon1.children()[0].pid()==-sign*211) {
	    baryon2 = baryon1.children()[1];
	  }
	  else
	    continue;
	  // first boost to the Lambdac rest frame
	  LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
	  FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	  FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	  // to lambda rest frame
	  LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	  Vector3 axis = pbaryon1.p3().unit();
	  FourMomentum pp = boost2.transform(pbaryon2);
	  // calculate angle
	  double cTheta = pp.p3().unit().dot(axis);
	  _h[imeson][0]->fill(cTheta);
	  _c[imeson][0][0]->fill();
	  _c[imeson][0][1]->fill(3.*cTheta);
	  if(baryon1.pid()>0) {
	    _h[imeson][1]->fill(cTheta);
	    _c[imeson][1][0]->fill();
	    _c[imeson][1][1]->fill(3.*cTheta);
	  }
	  else {
	    _h[imeson][2]->fill(cTheta);
	    _c[imeson][2][0]->fill();
	    _c[imeson][2][1]->fill(3.*cTheta);
	  }
	}
	// sigma0 case
	else {
	  Particle baryon2;
	  if(baryon1.children()[0].pid()== sign*3122 && 
	     baryon1.children()[1].pid()== 22) {
	    baryon2 = baryon1.children()[0];
	  }
	  else if(baryon1.children()[1].pid()== sign*3122 && 
		  baryon1.children()[0].pid()== 22) {
	    baryon2 = baryon1.children()[1];
	  }
	  else
	    continue;
	  Particle baryon3;
	  if(baryon2.children()[0].pid()== sign*2212 && 
	     baryon2.children()[1].pid()==-sign*211) {
	    baryon3 = baryon2.children()[0];
	  }
	  else if(baryon2.children()[1].pid()== sign*2212 && 
		  baryon2.children()[0].pid()==-sign*211) {
	    baryon3 = baryon2.children()[1];
	  }
	  else
	    continue;
	  // first boost to the Lambdac rest frame
	  LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
	  FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	  FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	  FourMomentum pbaryon3 = boost1.transform(baryon3.momentum());
	  // to  sigma rest frame
	  LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	  Vector3 axis = pbaryon1.p3().unit();
	  FourMomentum pp  = boost2.transform(pbaryon2);
	  FourMomentum pp3 = boost2.transform(pbaryon3);
	  // calculate angle
	  double cTheta2 = pp.p3().unit().dot(axis);
	  // to lambda rest frame
	  LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pp.betaVec());
	  Vector3 axis2 = pp.p3().unit();
	  FourMomentum pp4 = boost3.transform(pp3);
	  // calculate angle
	  double cTheta3 = pp4.p3().unit().dot(axis2);
	  double cTheta = cTheta2*cTheta3;
	  _c[imeson+2][0][0]->fill();
	  _c[imeson+2][0][1]->fill(-9.*cTheta);
	  if(baryon1.pid()>0) {
	    _c[imeson+2][1][0]->fill();
	    _c[imeson+2][1][1]->fill(-9.*cTheta);
	  }
	  else {
	    _c[imeson+2][2][0]->fill();
	    _c[imeson+2][2][1]->fill(-9.*cTheta);
	  }
	}
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      pair<double,double> aLambda(0.7542,0.0022); 
      for(int imeson=0;imeson<4;++imeson) {
	for(int iy=0;iy<3;++iy) {
	  if(imeson<2) normalize(_h[imeson][iy]);
	  Scatter1D R = *_c[imeson][iy][1]/ *_c[imeson][iy][0];
	  Scatter2DPtr _h_alpha1,_h_alpha2;
	  if(iy==0) {
	    book(_h_alpha1,1,1+imeson,1);
	    book(_h_alpha2,1,1+imeson,2);
	  }
	  else {
	    book(_h_alpha1,2,1+imeson,iy);
	    book(_h_alpha2,2,1+imeson,2+iy);
	  }
	  double              rval = R.point(0).x();
	  pair<double,double> rerr = R.point(0).xErrs();
	  _h_alpha1->addPoint(0.5, rval, make_pair(0.5,0.5), rerr );
	  // divide out aLambda
	  rerr.first  = sqrt(sqr(rerr.first /rval) + sqr(aLambda.second/aLambda.first));
	  rerr.second = sqrt(sqr(rerr.second/rval) + sqr(aLambda.second/aLambda.first));
	  rval /= aLambda.first;
	  rerr.first  *= rval;
	  rerr.second *= rval;
	  if(iy==2) {
	    rval *=-1;
	    swap(rerr.first,rerr.second);
	  }
	  _h_alpha2->addPoint(0.5, rval, make_pair(0.5,0.5), rerr );
	}
      }
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h[2][3];
    CounterPtr _c[4][3][2];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BELLE_2022_I2138841);

}