rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BELLE_2020_I1777678

Single and dihadron scaled momenta spectra at 10.58 GeV
Experiment: BELLE (KEKB)
Inspire ID: 1777678
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 101 (2020) 9, 092004
Beams: e+ e-
Beam energies: (5.3, 5.3) GeV
Run details:
  • e+ e- to hadrons

Measurement of single and di-hadron spectra by the BELLE collaboration at 10.58 GeV

Source code: BELLE_2020_I1777678.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/Thrust.hh"

namespace Rivet {


  /// @brief Single and di-hadron spectra
  class BELLE_2020_I1777678 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(BELLE_2020_I1777678);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(ChargedFinalState(Cuts::abspid==211 or Cuts::abspid==321 or Cuts::abspid==2212),"CFS");
      // projections
      FinalState fs;
      declare(fs,"FS");
      declare(Thrust(fs),"Thrust");
      // single particle hists
      vector<int> pdg={211,321,2212};
      for(unsigned int ix=0;ix<3;++ix) {
	book(_s_all   [pdg[ix]],1,ix+1,1);
	book(_s_strong[pdg[ix]],1,ix+1,2);
      }
      // dihadron histograms
      double bins[17]={0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,
      		       0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.00};
      unsigned int i0=1;
      for(unsigned int defn=0;defn<3;++defn) {
	for(unsigned int hemi=0;hemi<3;++hemi) {
	  for(unsigned int ip=0;ip<6;++ip) {
	    i0+=1;
	    unsigned int ymax=16;
	    if(i0==7 || i0==19)      ymax=15;
	    else if(i0>=8 && i0<=12) ymax=14;
	    else if(i0==13)          ymax=13;
	    else if(i0==26)          ymax=10;
	    else if(i0==27||i0==30)  ymax= 9;
	    else if(i0==28)          ymax= 7;
	    else if(i0==29)          ymax= 8;
	    else if(i0==31||i0==44)  ymax= 6;
	    else if(i0==45||i0==48)  ymax= 5;
	    else if(i0==46||i0==47)  ymax= 4;
	    else if(i0==49        )  ymax= 3;
	    for(unsigned int iy=0;iy<ymax;++iy) {
	      Histo1DPtr temp;
	      book(temp,i0,1,iy+1);
	      _d_all   [ip][defn][hemi].add(bins[iy],bins[iy+1],temp);
	      book(temp,i0,2,iy+1);
	      _d_strong[ip][defn][hemi].add(bins[iy],bins[iy+1],temp);
	    }
	  }
	}
      }
    }

    bool isWeak(const Particle & p) {
      bool weak = false;
      if(p.parents().empty()) return weak;
      Particle parent = p.parents()[0];
      while (!parent.parents().empty()) {
	if(parent.abspid()==411  || parent.abspid()==421  || parent.abspid()==431  ||
	   parent.abspid()==4122 || parent.abspid()==4232 || parent.abspid()==4132 ||
	   parent.abspid()==4332) {
	  weak=true;
	  break;
	}
	parent = parent.parents()[0];
      }
      return weak;
    }
    
    void fillHistos(int ip,bool strong,bool same,bool opp,
		    const Particle & p1, const Particle & p2) {
      for(unsigned int def=0;def<3;++def) {
	double z1 = 0., z2 = 0.;
	if(def==0) {
	  z1 = 2.*p1.momentum().t()/sqrtS();
	  z2 = 2.*p2.momentum().t()/sqrtS();
	}
	else if(def==1) {
	  z1 = 2.*p1.momentum().t()/sqrtS();
	  z2 = (p1.momentum()*p2.momentum())/p1.momentum().t()/sqrtS();
	}
	else if(def==2) {
	  double p1p2 = p1.momentum()*p2.momentum();
	  double p1q = p1.momentum().t()*sqrtS();
	  double p2q = p2.momentum().t()*sqrtS();
	  z1 = (p1p2-p1.mass2()*p2.mass2()/p1p2)/(p2q-p2.mass2()*p1q/p1p2);
	  z2 = (p1p2-p1.mass2()*p2.mass2()/p1p2)/(p1q-p1.mass2()*p2q/p1p2);
	}
	_d_all[ip][def][0].fill(z1,z2,0.5);
	if(strong) _d_strong[ip][def][0].fill(z1,z2,0.5);
	if(same) {
	  _d_all[ip][def][1].fill(z1,z2,0.5);
	  if(strong) _d_strong[ip][def][1].fill(z1,z2,0.5);
	}
	if(opp) {
	  _d_all[ip][def][2].fill(z1,z2,0.5);
	  if(strong) _d_strong[ip][def][2].fill(z1,z2,0.5);
	}
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // apply projection
      const ChargedFinalState& cfs = apply<ChargedFinalState>(event, "CFS");
      // fill single particle histos
      for (const Particle& p : cfs.particles()) {
	const double z = 2.*p.momentum().t()/sqrtS();
	_s_all   [p.abspid()]->fill(z);
	if(!isWeak(p)) _s_strong[p.abspid()]->fill(z);
      }
      // get thrust
      const Thrust thrust = apply<Thrust>(event,"Thrust");
      ThreeVector axis = thrust.thrustAxis();
      Particles piK = cfs.particles(Cuts::abspid==PID::KPLUS or
				    Cuts::abspid==PID::PIPLUS);
      for(unsigned int ix=0;ix<piK.size();++ix) {
	double dot1 = axis.dot(piK[ix].momentum().p3());
	bool weak1 = isWeak(piK[ix]);
	for(unsigned int iy=0;iy<piK.size();++iy) {
	  if(ix==iy) continue;
	  double dot2 = axis.dot(piK[iy].momentum().p3());
	  bool weak2 = isWeak(piK[iy]);
	  bool strong = !weak1 && !weak2;
	  bool same = thrust.thrust()>0.8 && dot1*dot2>0.;
	  bool opp  = thrust.thrust()>0.8 && dot1*dot2<0.;
	  unsigned int ip=0;
	  if(piK[ix].pid()==PID::PIPLUS) {
	    if(piK[iy].pid()==PID::PIPLUS)       ip=1;
	    else if(piK[iy].pid()==PID::PIMINUS) ip=0;
	    else if(piK[iy].pid()==PID::KPLUS  ) ip=3;
	    else if(piK[iy].pid()==PID::KMINUS)  ip=2;
	  }
	  else if(piK[ix].pid()==PID::PIMINUS) {
	    if(piK[iy].pid()==PID::PIPLUS)       ip=0;
	    else if(piK[iy].pid()==PID::PIMINUS) ip=1;
	    else if(piK[iy].pid()==PID::KPLUS  ) ip=2;
	    else if(piK[iy].pid()==PID::KMINUS ) ip=3;
	  }
	  else if(piK[ix].pid()==PID::KPLUS) {
	    if(piK[iy].pid()==PID::PIPLUS)       ip=3;
	    else if(piK[iy].pid()==PID::PIMINUS) ip=2;
	    else if(piK[iy].pid()==PID::KPLUS)   ip=5;
	    else if(piK[iy].pid()==PID::KMINUS)  ip=4;
	  }
	  else if(piK[ix].pid()==PID::KMINUS) {
	    if(piK[iy].pid()==PID::PIPLUS)       ip=2;
	    else if(piK[iy].pid()==PID::PIMINUS) ip=3;
	    else if(piK[iy].pid()==PID::KPLUS)   ip=4;
	    else if(piK[iy].pid()==PID::KMINUS)  ip=5;
	  }
	  fillHistos(ip,strong,same,opp,piK[ix],piK[iy]);
	}
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      for (const auto& kv : _s_all)
	scale(kv.second,crossSection()/femtobarn/sumOfWeights());
      for (const auto& kv : _s_strong)
	scale(kv.second,crossSection()/femtobarn/sumOfWeights());
      for(unsigned int ix=0;ix<6;++ix) {
	for(unsigned int iy=0;iy<3;++iy) {
	  for(unsigned int iz=0;iz<3;++iz) {
	    _d_all   [ix][iy][iz].scale(crossSection()/femtobarn/sumOfWeights(),this);
	    _d_strong[ix][iy][iz].scale(crossSection()/femtobarn/sumOfWeights(),this);
	  }
	}
      }
    }

    ///@}


    /// @name Histograms
    ///@{
    map<int,Histo1DPtr> _s_all,_s_strong;
    BinnedHistogram _d_all[6][3][3],_d_strong[6][3][3];
    ///@}


  };


  DECLARE_RIVET_PLUGIN(BELLE_2020_I1777678);

}