rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BELLE_2017_I1613517

Cross Section for $e^+e^-\to D^\pm D^{*\mp}$ and $D^{*+}D^{*-}$ from threshold to 6 GeV
Experiment: BELLE (KEKB)
Inspire ID: 1613517
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev. D97 (2018) no.1, 012002
Beams: e- e+
Beam energies: ANY
Run details:
  • e+ e- to hadrons

Measurement of the cross section for $e^+e^-\to D^\pm D^{*\mp}$ and $D^{*+}D^{*-}$ from threshold to 6 GeV.

Source code: BELLE_2017_I1613517.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief D+/- D*-/+ and D*+ D*- cross sections
  class BELLE_2017_I1613517 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(BELLE_2017_I1613517);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(FinalState(), "FS");
      declare(UnstableParticles(), "UFS");

      // Book histograms
      book(_c_DpDmS, "/TMP/sigma_DpDmS");
      book(_c_DpSDmS, "/TMP/sigma_DpSDmS");
    }

    void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
      for(const Particle &child : p.children()) {
	if(child.children().empty()) {
	  nRes[child.pid()]-=1;
	  --ncount;
	}
	else
	  findChildren(child,nRes,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const FinalState& fs = apply<FinalState>(event, "FS");
      // total hadronic and muonic cross sections
      map<long,int> nCount;
      int ntotal(0);
      for (const Particle& p : fs.particles()) {
	nCount[p.pid()] += 1;
	++ntotal;
      }
      // mu+mu- + photons
      if(nCount[-13]==1 and nCount[13]==1 &&
	 ntotal==2+nCount[22])
	vetoEvent;
      // unstable charm analysis
      const FinalState& ufs = apply<UnstableParticles>(event, "UFS");
      for(unsigned int ix=0;ix<ufs.particles().size();++ix) {
       	const Particle& p1 = ufs.particles()[ix];
       	int id1 = abs(p1.pid());
       	if(id1 != 411 && id1 != 413) continue;
      	// check fs
      	bool fs = true;
      	for (const Particle & child : p1.children()) {
      	  if(child.pid()==p1.pid()) {
      	    fs = false;
      	    break;
      	  }
      	}
      	if(!fs) continue;
      	// find the children
      	map<long,int> nRes = nCount;
      	int ncount = ntotal;
      	findChildren(p1,nRes,ncount);
      	bool matched=false;
       	int sign = p1.pid()/id1;
      	// loop over the other fs particles
      	for(unsigned int iy=ix+1;iy<ufs.particles().size();++iy) {
      	  const Particle& p2 = ufs.particles()[iy];
      	  fs = true;
      	  for (const Particle & child : p2.children()) {
      	    if(child.pid()==p2.pid()) {
      	      fs = false;
      	      break;
      	    }
      	  }
      	  if(!fs) continue;
       	  if(p2.pid()/abs(p2.pid())==sign) continue;
      	  int id2 = abs(p2.pid());
       	  if(id2 != 411 && id2 != 413) continue;
      	  if(!p2.parents().empty() && p2.parents()[0].pid()==p1.pid())
      	    continue;
      	  map<long,int> nRes2 = nRes;
      	  int ncount2 = ncount;
      	  findChildren(p2,nRes2,ncount2);
	  if(ncount2!=0) continue;
	  matched=true;
	  for(auto const & val : nRes2) {
	    if(val.second!=0) {
	      matched = false;
	      break;
	    }
	  }
	  if(matched) {
	    if(id1==413 && id2==413) {
	      _c_DpSDmS->fill();
	    }
	    else if((id1==411 && id2==413) ||
		    (id1==413 && id2==411)) {
	      _c_DpDmS->fill();
	    }
	    break;
	  }
      	}
	if(matched) break;
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      double fact = crossSection()/ sumOfWeights()/nanobarn;
      for(unsigned int iy=1;iy<3;++iy) {
	double sigma = 0.0, error = 0.0;
	if(iy==1) {
	  sigma = _c_DpDmS->val()*fact;
	  error = _c_DpDmS->err()*fact;
	}
	else if(iy==2) {
	  sigma = _c_DpSDmS->val()*fact;
	  error = _c_DpSDmS->err()*fact;
	}
	Scatter2D temphisto(refData(1, 1, iy));
        Scatter2DPtr     mult;
        book(mult, 1, 1, iy);
        for (size_t b = 0; b < temphisto.numPoints(); b++) {
          const double x  = temphisto.point(b).x();
          pair<double,double> ex = temphisto.point(b).xErrs();
          pair<double,double> ex2 = ex;
          if(ex2.first ==0.) ex2. first=0.0001;
          if(ex2.second==0.) ex2.second=0.0001;
          if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
            mult   ->addPoint(x, sigma, ex, make_pair(error,error));
          }
          else {
            mult   ->addPoint(x, 0., ex, make_pair(0.,.0));
          }
        }
      }
    }
    //@}


    /// @name Histograms
    //@{
    CounterPtr _c_DpDmS, _c_DpSDmS;
    //@}


  };


  // The hook for the plugin system
  DECLARE_RIVET_PLUGIN(BELLE_2017_I1613517);


}