|
Rivet analyses reference
BELLE_2016_I1408873
$\chi_{c1}$ and $\chi_{c2}$ production in $B$ decays
Experiment: BELLE (KEKB)
Inspire ID: 1408873
Status: VALIDATED NOHEPDATA
Authors:
References:
- Phys.Rev.D 93 (2016) 5, 052016
Beams: e+ e-
Beam energies: (5.3, 5.3) GeV
Run details:
- $e^+ e^-$ at the $\Upsilon(4S)$
Measurement of inclusve production of $\chi_{c1}$ and $\chi_{c2}$ in $B$ decays, in reality the spectrum at the $\Upsilon(4S)$, together with mass distributions in several $B$ decays.
Source code:
BELLE_2016_I1408873.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"
namespace Rivet {
/// @brief B -> chi_c1 and chi_c2
class BELLE_2016_I1408873 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2016_I1408873);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// projections
declare(UnstableParticles(Cuts::pid==300553 or Cuts::pid==9000553), "UPS");
UnstableParticles ufs = UnstableParticles(Cuts::abspid==511 ||
Cuts::abspid==521);
declare(ufs, "UFS");
DecayedParticles BB(ufs);
BB.addStable( 20443);
BB.addStable( 445);
BB.addStable( 310);
BB.addStable( 111);
declare(BB, "BB");
// book histograms
for(unsigned int ix=0;ix<2;++ix) {
book(_h_spect[ix],1,1,1+ix);
for(int iy=0;iy<5;++iy) {
book(_h_three[iy][ix],2,1+ix,1+iy);
if(iy<2)
book(_h_four[ix][iy],3,1+iy,1+ix);
else
book(_h_four[ix][iy],4,iy-1,1+ix);
}
}
book(_wUps,"/TMP/Ups4");
}
/// Recursively walk the decay tree to find decay products of @a p
void findDecayProducts(Particle mother, Particles& unstable) {
for(const Particle & p: mother.children()) {
const int id = abs(p.pid());
if (id == 20443 || id == 445 ) {
unstable.push_back(p);
}
else if(!p.children().empty())
findDecayProducts(p, unstable);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// upsilon spectrum
for (const Particle& ups : apply<UnstableParticles>(event, "UPS").particles()) {
_wUps->fill();
LorentzTransform cms_boost;
if (ups.p3().mod() > 0.001)
cms_boost = LorentzTransform::mkFrameTransformFromBeta(ups.momentum().betaVec());
Particles unstable;
// Find the decay products we want
findDecayProducts(ups,unstable);
for(const Particle & p : unstable) {
double modp = cms_boost.transform(p.momentum()).p3().mod();
if(p.pid()==20443) _h_spect[0]->fill(modp);
else _h_spect[1]->fill(modp);
}
}
// exclusive decay modes
static const map<PdgId,unsigned int> & mode1 = { { 20443,1},{-211,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode1CC = { { 20443,1},{ 211,1}, {-321,1}};
static const map<PdgId,unsigned int> & mode2 = { { 445,1},{-211,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode2CC = { { 445,1},{ 211,1}, {-321,1}};
static const map<PdgId,unsigned int> & mode3 = { { 20443,1},{ 211,1}, { 310,1}};
static const map<PdgId,unsigned int> & mode3CC = { { 20443,1},{-211,1}, { 310,1}};
static const map<PdgId,unsigned int> & mode4 = { { 445,1},{ 211,1}, { 310,1}};
static const map<PdgId,unsigned int> & mode4CC = { { 445,1},{-211,1}, { 310,1}};
static const map<PdgId,unsigned int> & mode5 = { { 20443,1},{ 111,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode5CC = { { 20443,1},{ 111,1}, {-321,1}};
static const map<PdgId,unsigned int> & mode6 = { { 20443,1},{ 211,1}, {-211,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode6CC = { { 20443,1},{ 211,1}, {-211,1}, {-321,1}};
static const map<PdgId,unsigned int> & mode7 = { { 445,1},{ 211,1}, {-211,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode7CC = { { 445,1},{ 211,1}, {-211,1}, {-321,1}};
DecayedParticles BB = apply<DecayedParticles>(event, "BB");
// loop over particles
for(unsigned int ix=0;ix<BB.decaying().size();++ix) {
int sign = 1, imode =-1, ichi=0, iK=310,ipi=211;
if(BB.decaying()[ix].abspid()==511) {
iK = 321;
ipi=-211;
if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode1)) {
ichi=20443;
sign=1;
imode=0;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode1CC)) {
ichi=20443;
sign=-1;
imode=0;
}
else if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode2)) {
ichi=445;
sign=1;
imode=1;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode2CC)) {
ichi=445;
sign=-1;
imode=1;
}
else
continue;
}
else {
if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode3)) {
ichi=20443;
sign=1;
imode=2;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode3CC)) {
ichi=20443;
sign=-1;
imode=2;
}
else if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode4)) {
ichi=445;
sign=1;
imode=3;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode4CC)) {
ichi=445;
sign=-1;
imode=3;
}
else if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode5)) {
ichi=20443;
sign=1;
imode=4;
iK=321;
ipi=111;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode5CC)) {
ichi=20443;
sign=-1;
imode=4;
iK=321;
ipi=111;
}
else if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,4,mode6)) {
ichi=20443;
sign=1;
imode=5;
iK=321;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,4,mode6CC)) {
ichi=20443;
sign=-1;
imode=5;
iK=321;
}
else if (BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,4,mode7)) {
ichi=445;
sign=1;
imode=6;
iK=321;
}
else if (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,4,mode7CC)) {
ichi=445;
sign=-1;
imode=6;
iK=321;
}
else
continue;
}
if(ipi!=111) ipi*=sign;
if(iK !=310) iK *=sign;
const Particle & pip = BB.decayProducts()[ix].at(ipi )[0];
const Particle & K = BB.decayProducts()[ix].at(iK )[0];
const Particle & chi = BB.decayProducts()[ix].at(ichi)[0];
if(imode<5) {
_h_three[imode][0]->fill((pip.momentum()+K .momentum()).mass());
_h_three[imode][1]->fill((chi.momentum()+pip.momentum()).mass());
}
else {
const Particle & pim = BB.decayProducts()[ix].at(-ipi)[0];
FourMomentum ppi = pim.momentum()+pip.momentum();
imode -=5;
_h_four[imode][0]->fill((chi.momentum()+ppi).mass());
_h_four[imode][1]->fill((chi.momentum()+pim.momentum()).mass());
_h_four[imode][1]->fill((chi.momentum()+pip.momentum()).mass());
_h_four[imode][2]->fill((K.momentum()+ppi).mass());
_h_four[imode][3]->fill((K.momentum()+pim.momentum()).mass());
_h_four[imode][4]->fill(ppi.mass());
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=0;ix<2;++ix) {
scale(_h_spect[ix], 1e4/2./ *_wUps);
for(unsigned int iy=0;iy<5;++iy) {
normalize(_h_three[iy][ix],1.,false);
normalize(_h_four [ix][iy],1.,false);
}
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_spect[2];
Histo1DPtr _h_three[5][2];
Histo1DPtr _h_four [2][5];
CounterPtr _wUps;
/// @}
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d03-x01-y01
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d03-x02-y01
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d03-x01-y02
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d03-x02-y02
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x01-y01
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x02-y01
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x03-y01
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x01-y02
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x02-y02
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2016_I1408873/d04-x03-y02
};
RIVET_DECLARE_PLUGIN(BELLE_2016_I1408873);
}
|
|