rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BELLE_2015_I1369998

$\bar{B}^0\to D^{*+}\omega\pi^-$ decays
Experiment: BELLE (KEKB)
Inspire ID: 1369998
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 92 (2015) 1, 012013
  • JHEP 09 (2011) 129
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing B0, originally e+e- at Upsilon(4S)

Mass and aangular distributions in $\bar{B}^0\to D^{*+}\omega\pi^-$ decays. Data read from plots with the backgrounds given subtracted.

Source code: BELLE_2015_I1369998.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief B -> D* omega pi
  class BELLE_2015_I1369998 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2015_I1369998);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==511);
      declare(ufs, "UFS");
      DecayedParticles B0(ufs);
      B0.addStable( 413);
      B0.addStable(-413);
      B0.addStable( 223);
      declare(B0, "B0");
      for(unsigned int ix=0;ix<4;++ix)
	for(unsigned int iy=0;iy<6;++iy)
	  book(_h[ix][iy],1+ix,1,1+iy);
    }

    void findChildren(const Particle & p, Particles & pim, Particles & pip,
		      Particles & pi0, unsigned int &ncount) {
      for( const Particle &child : p.children()) {
	if(child.pid()==PID::PIPLUS) {
	  pip.push_back(child);
	  ncount+=1;
	}
	else if(child.pid()==PID::PIMINUS) {
	  pim.push_back(child);
	  ncount+=1;
	}
	else if(child.pid()==PID::PI0) {
	  pi0.push_back(child);
	  ncount+=1;
	}
	else if(child.children().empty()) {
	  ncount+=1;
	}
    	else
    	  findChildren(child,pim,pip,pi0,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      static const map<PdgId,unsigned int> & mode   = { { 413,1},{ 223,1}, {-211,1}};
      static const map<PdgId,unsigned int> & modeCC = { {-413,1},{ 223,1}, { 211,1}};
      DecayedParticles B0 = apply<DecayedParticles>(event, "B0");
      // loop over particles
      for(unsigned int ix=0;ix<B0.decaying().size();++ix) {
	int sign = 1;
      	if(B0.decaying()[ix].pid()<0 && B0.modeMatches(ix,3,mode))
	  sign =  1;
	else if(B0.decaying()[ix].pid()>0 && B0.modeMatches(ix,3,modeCC))
	  sign = -1; 
	else 
      	  continue;
	const Particle & Dstar = B0.decayProducts()[ix].at( sign*413)[0];
	const Particle & omega = B0.decayProducts()[ix].at(      223)[0];
	const Particle & pim1  = B0.decayProducts()[ix].at(-sign*211)[0];
	// mass hists, no cuts
	double mOmegaPi2 = (omega.momentum()+pim1.momentum()).mass2();
	_h[0][0]->fill(mOmegaPi2);
	double mDstarpi2 = (Dstar.momentum()+pim1.momentum()).mass2();
	_h[1][0]->fill(mDstarpi2);
	// check the no of decay products
	if(Dstar.children().size()!=2 || omega.children().size()!=3)
	  continue;
	// find the children of the D* meson
	Particle D0,pip1;
	if(Dstar.children()[0].pid()==sign*211 &&
	   Dstar.children()[1].pid()==sign*421) {
	  pip1 = Dstar.children()[0];
	  D0   = Dstar.children()[1];
	}
	else if(Dstar.children()[1].pid()==sign*211 &&
		Dstar.children()[0].pid()==sign*421) {
	  pip1 = Dstar.children()[1];
	  D0   = Dstar.children()[0];
	}
	else
	  continue;
	// children of the omega
	unsigned int ncount=0;
	Particles pip,pim,pi0;
	findChildren(omega,pim,pip,pi0,ncount);
	if( ncount!=3 || !(pim.size()==1 && pip.size()==1 && pi0.size()==1)) continue;
	// first bottom to the B frame
	LorentzTransform boostB = LorentzTransform::mkFrameTransformFromBeta(B0.decaying()[ix].momentum().betaVec());
	FourMomentum pOmega = boostB.transform(omega.momentum());
	FourMomentum pDstar = boostB.transform(Dstar.momentum());
	FourMomentum pD     = boostB.transform(D0   .momentum());
	FourMomentum ppim1  = boostB.transform(pim1 .momentum());
	FourMomentum ppim2  = boostB.transform(pim[0].momentum());
	FourMomentum ppip1  = boostB.transform(pip1 .momentum());
	FourMomentum ppip2  = boostB.transform(pip[0].momentum());
	// ---------------------- First set of angles --------------------------------------
	// first the angles for D* (pi omega)
	LorentzTransform boostD = LorentzTransform::mkFrameTransformFromBeta(pDstar.betaVec());
	Vector3 axisD    = boostD.transform(pD   ).p3().unit();
	Vector3 axispip1 = boostD.transform(ppip1).p3().unit();
	Vector3 axisDstar = (pOmega+ppim1).p3().unit();
	double cBeta1 = axisDstar.dot(axisD);
	_h[0][3]->fill(cBeta1);
	LorentzTransform boostWpi = LorentzTransform::mkFrameTransformFromBeta((pOmega+ppim1).betaVec());
	FourMomentum pOmega2 = boostWpi.transform(pOmega);
	Vector3 axisW   = pOmega2.p3().unit();
	Vector3 axisWpi = (pOmega+ppim1).p3().unit();
	double cXi1 = axisWpi.dot(axisW);
	_h[0][1]->fill(cXi1);
	// now angle between the two planes
	Vector3 transW = axisW-cXi1*axisWpi;
	Vector3 transD = axisD-cBeta1*axisDstar;
	double psi1 = atan2(transW.cross(transD).dot(axisDstar), transW.dot(transD));
	_h[0][5]->fill(psi1);
	// normal to omega decay plane
	LorentzTransform boostW = LorentzTransform::mkFrameTransformFromBeta(pOmega2.betaVec());
	FourMomentum ppim3  = boostW.transform(boostWpi.transform(ppim2));
	FourMomentum ppip3  = boostW.transform(boostWpi.transform(ppip2));
	Vector3 nW = ppim3.p3().cross(ppip3.p3()).unit();
	// boost B decay products to omega rest frame
	FourMomentum pOmegaPi = boostW.transform(boostWpi.transform(pOmega+ppim1));
	FourMomentum pDstar2  = boostW.transform(boostWpi.transform(pDstar));
	Vector3 axisWpi2 = pOmegaPi.p3().unit();
	double cTheta1 = axisWpi2.dot(nW);
	transW = nW-cTheta1*axisWpi2;
	transD = pDstar2.p3().unit()-pDstar2.p3().unit().dot(axisWpi2)*axisWpi2;
	double phi1 = atan2(transW.cross(transD).dot(axisWpi2), transW.dot(transD));
	_h[0][2]->fill(cTheta1);
	_h[0][4]->fill(phi1);
	// ---------------------- Second set of angles --------------------------------------
	// boost to D* pi frame
	LorentzTransform boostDpi = LorentzTransform::mkFrameTransformFromBeta((pDstar+ppim1).betaVec());
	pDstar2 = boostDpi.transform(pDstar);
	pOmega2 = boostDpi.transform(pOmega);
	axisW     = pOmega2.p3().unit();
	axisDstar = pDstar2.p3().unit();
	double cXi2 = axisW.dot(axisDstar);
	_h[1][1]->fill(cXi2);
	// boost to D* rest frame
	LorentzTransform boostDstar = LorentzTransform::mkFrameTransformFromBeta(pDstar2.betaVec());
	axisW = boostDstar.transform(pOmega2).p3().unit();
	Vector3 axisDSpi= boostDstar.transform(boostDpi.transform(pDstar+ppim1)).p3().unit();
        axisD= boostDstar.transform(boostDpi.transform(pD)).p3().unit();
	double cBeta2 = axisD.dot(axisDSpi);
	_h[1][3]->fill(cBeta2);
	transW = axisW-axisW.dot(axisDSpi)*axisDSpi;
	transD = axisD-cBeta2*axisDSpi;
	double psi2 = atan2(transW.cross(transD).dot(axisDSpi), transW.dot(transD));
	_h[1][5]->fill(psi2);
	// boost to omega frame
	boostW = LorentzTransform::mkFrameTransformFromBeta(pOmega.betaVec());
	ppim3  = boostW.transform(ppim2);
	ppip3  = boostW.transform(ppip2);
	nW = ppim3.p3().cross(ppip3.p3()).unit();
	axisDSpi  = boostW.transform(pDstar+ppim1).p3().unit();
	axisDstar = boostW.transform(pDstar).p3().unit();
	double cTheta2 = axisDSpi.dot(nW);
	_h[1][2]->fill(cTheta2);
	transW = nW-cTheta2*axisDSpi;
	transD = axisDstar.unit()-axisDstar.dot(axisDSpi)*axisDSpi;
	double phi2 = atan2(transW.cross(transD).dot(axisDSpi), transW.dot(transD));
	_h[1][4]->fill(psi2);
	// restricted plots
	if(abs(cTheta1)>.5) {
	  _h[2][0]->fill(mOmegaPi2);
	}
	else {
	  _h[2][1]->fill(mOmegaPi2);
	  _h[2][3]->fill(cBeta1);
	  _h[2][5]->fill(psi1);
	  _h[3][1]->fill(mDstarpi2);
	  _h[3][3]->fill(cTheta2);
	  _h[3][5]->fill(phi2);
	}
	if(cXi2>-.4) {
	  _h[2][2]->fill(cBeta1);
	  _h[2][4]->fill(psi1);
	  _h[3][0]->fill(mDstarpi2);
	  _h[3][2]->fill(cTheta2);
	  _h[3][4]->fill(phi2);
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<4;++ix)
	for(unsigned int iy=0;iy<6;++iy)
	  normalize(_h[ix][iy],1.,false);
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h[4][6];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BELLE_2015_I1369998);

}