|
Rivet analyses reference
BELLE_2009_I817326
Differential branching ratio, polarization and asymmetries in $B\to K^{(*)}\ell^+\ell^-$
Experiment: BELLE (KEKB)
Inspire ID: 817326
Status: VALIDATED NOHEPDATA
Authors:
References:
- Phys.Rev.Lett. 103 (2009) 171801
Beams: * *
Beam energies: ANY
Run details:
- Any process production B0 and B+ mesons, oeiginally Upsilon(4S) decay
Measurement of the differential branching ratio, polarization and asymmetries in $B\to K^{(*)}\ell^+\ell^-$ as a function of $q^2$.
Source code:
BELLE_2009_I817326.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"
namespace Rivet {
/// @brief B -> K(*) l+ l-
class BELLE_2009_I817326 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2009_I817326);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
UnstableParticles ufs = UnstableParticles(Cuts::abspid==511 or
Cuts::abspid==521);
declare(ufs, "UFS");
DecayedParticles BB(ufs);
BB.addStable( 443);
BB.addStable(100443);
BB.addStable(PID::K0S);
BB.addStable(PID::K0L);
BB.addStable( 313);
BB.addStable(-313);
BB.addStable( 323);
BB.addStable(-323);
declare(BB, "BB");
for(unsigned int ix=0;ix<2;++ix) {
book(_p_FL[ix],1,1+ix,2);
for(unsigned int iy=0;iy<2;++iy) {
book(_h_br[ix][iy],1+ix,1+iy,1);
book(_p_FB[ix][iy],1+ix,1+iy,4);
for(unsigned int iz=0;iz<2;++iz)
book(_h_br_B[ix][iy][iz],
"TMP/h_br_"+toString(ix+1)+"_"+toString(iy+1)+"_"+toString(iz+1),
refData(1+ix,1+iy,1));
}
};
for(unsigned int ix=0;ix<3;++ix)
book(_c[ix],"TMP/c_"+toString(ix+1));
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const map<PdgId,unsigned int> & mode1 = { { 321,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode1CC = { {-321,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode2 = { { 310,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode2CC = { { 130,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode3 = { { 321,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode3CC = { {-321,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode4 = { { 310,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode4CC = { { 130,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode5 = { { 323,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode5CC = { {-323,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode6 = { { 313,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode6CC = { {-313,1},{ 13,1}, {-13,1}};
static const map<PdgId,unsigned int> & mode7 = { { 323,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode7CC = { {-323,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode8 = { { 313,1},{ 11,1}, {-11,1}};
static const map<PdgId,unsigned int> & mode8CC = { {-313,1},{ 11,1}, {-11,1}};
DecayedParticles BB = apply<DecayedParticles>(event, "BB");
for(unsigned int ix=0;ix<BB.decaying().size();++ix) {
_c[0]->fill();
if(BB.decaying()[ix].abspid()==521) _c[1]->fill();
else _c[2]->fill();
int imode=0;
if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode1)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode1CC))) imode=0;
else if (BB.modeMatches(ix,3,mode2)||BB.modeMatches(ix,3,mode2CC)) imode=1;
else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode3)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode3CC))) imode=2;
else if (BB.modeMatches(ix,3,mode4) || BB.modeMatches(ix,3,mode4CC)) imode=3;
else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode5)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode5CC))) imode=4;
else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode6)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode6CC))) imode=5;
else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode7)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode7CC))) imode=6;
else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode8)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode8CC))) imode=7;
else continue;
int il = imode<2 || imode==4 || imode==5 ? 13 : 11;
const Particle & lp = BB.decayProducts()[ix].at(-il)[0];
const Particle & lm = BB.decayProducts()[ix].at( il)[0];
double qq = (lp.momentum()+lm.momentum()).mass2();
for(unsigned int iy=0;iy<2;++iy) {
if(imode<4) {
_h_br[1][iy]->fill(qq);
if(BB.decaying()[ix].abspid()==521)
_h_br_B[1][iy][0]->fill(qq);
else
_h_br_B[1][iy][1]->fill(qq);
}
else {
_h_br[0][iy]->fill(qq);
if(BB.decaying()[ix].abspid()==521)
_h_br_B[0][iy][0]->fill(qq);
else
_h_br_B[0][iy][1]->fill(qq);
}
}
// first boost to bottom frame
const LorentzTransform boost =
LorentzTransform::mkFrameTransformFromBeta(BB.decaying()[ix].momentum().betaVec());
FourMomentum plp = boost.transform(lp .momentum());
FourMomentum plm = boost.transform(lm .momentum());
FourMomentum pB = boost.transform(BB.decaying()[ix].momentum());
// lepton stuff
const LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta((plp+plm).betaVec());
plp = boost2.transform(plp);
double cTheta = plp.p3().unit().dot(boost .transform(pB ).p3().unit());
double AFB = cTheta>0 ? 1 : -1;
for(unsigned int iy=0;iy<2;++iy) {
if(imode<4) _p_FB[1][iy]->fill(qq,AFB);
else _p_FB[0][iy]->fill(qq,AFB);
}
// only K* for FL
if(imode<4) continue;
int iK = BB.decaying()[ix].abspid()==521 ? 323 : 313;
iK *= BB.decaying()[ix].pid()/BB.decaying()[ix].abspid();
const Particle & Kstar = BB.decayProducts()[ix].at( iK)[0];
FourMomentum pKstar = boost.transform(Kstar.momentum());
if(Kstar.children().size()!=2) continue;
Particle KK;
if(Kstar.abspid()==313) {
if(Kstar.children()[0].abspid()==321 &&
Kstar.children()[1].abspid()==211)
KK = Kstar.children()[0];
else if(Kstar.children()[1].abspid()==321 &&
Kstar.children()[0].abspid()==211)
KK = Kstar.children()[1];
else continue;
}
else {
if(Kstar.children()[0].abspid()==311 &&
Kstar.children()[1].abspid()==211)
KK = Kstar.children()[0];
else if(Kstar.children()[1].abspid()==311 &&
Kstar.children()[0].abspid()==211)
KK = Kstar.children()[1];
else if(Kstar.children()[0].abspid()==310 &&
Kstar.children()[1].abspid()==211)
KK = Kstar.children()[0];
else if(Kstar.children()[1].abspid()==310 &&
Kstar.children()[0].abspid()==211)
KK = Kstar.children()[1];
else if(Kstar.children()[0].abspid()==321 &&
Kstar.children()[1].abspid()==111 && il==11)
KK = Kstar.children()[0];
else if(Kstar.children()[1].abspid()==321 &&
Kstar.children()[0].abspid()==111 && il==11)
KK = Kstar.children()[1];
else continue;
if(KK.abspid()==311) {
if(KK.children().size()==1 && KK.children()[0].pid()==310)
KK = KK.children()[0];
else
continue;
}
}
FourMomentum pK = boost.transform(KK .momentum());
const LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pKstar.betaVec());
pK = boost3.transform(pK);
cTheta = pK.p3().unit().dot(boost .transform(pB ).p3().unit());
double FL = .5*(5.*sqr(cTheta)-1.);
for(unsigned int iy=0;iy<2;++iy) _p_FL[iy]->fill(qq,FL);
}
}
/// Normalise histograms etc., after the run
void finalize() {
// ratio of lifetimes
double rLife = 1./1.078;
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
scale(_h_br[ix][iy],0.5e7/ *_c[0]);
for(unsigned int il=0;il<2;++il) {
scale(_h_br_B[ix][iy][il],0.5e7/ *_c[il+1]);
if (il==0) scale(_h_br_B[ix][iy][il],rLife);
}
// A_I plots
Scatter2DPtr AI;
book(AI,1+ix,1+iy,3);
asymm(_h_br_B[ix][iy][1],_h_br_B[ix][iy][0],AI);
}
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_br[2][2],_h_br_B[2][2][2];
Profile1DPtr _p_FL[2],_p_FB[2][2];
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2009_I817326/d01-x01-y02
// BEGIN YODA_SCATTER2D_V2 /REF/BELLE_2009_I817326/d01-x02-y02
CounterPtr _c[3];
/// @}
};
RIVET_DECLARE_PLUGIN(BELLE_2009_I817326);
}
|
|