rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BELLE_2009_I803343

Mass and angular distributions in $B\to\Lambda^0\bar\Lambda^0 K^{(*)}$
Experiment: BELLE (KEKB)
Inspire ID: 803343
Status: VALIDATED NOHEPDATA
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 79 (2009) 052006
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing B0, originally Upsilon(4S) decay

Measurement of mass and angular distributions in $B^0\to\Lambda^0\bar\Lambda^0 K^0$, $B^+\to\Lambda^0\bar\Lambda^0 K^+$ and $B^0\to\Lambda^0\bar\Lambda^0 K^{*0}$. The data for the mass spectra was read from the tables in the paper and are fully corrected, while those for the angular distributions in the threshold region were read from the figures and may not be corrected.

Source code: BELLE_2009_I803343.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief B0 -> Lambda Lambdabar K(*)0
  class BELLE_2009_I803343 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2009_I803343);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::pid==511 ||
						Cuts::pid==521);
      declare(ufs, "UFS");
      DecayedParticles BB(ufs);
      BB.addStable( 3122);
      BB.addStable(-3122);
      BB.addStable( 310);
      BB.addStable( 313);
      BB.addStable(-313);
      declare(BB, "BB");
      // histograms
      for(unsigned int ix=0;ix<3;++ix) {
	book(_h_mass[ix],1,1,1+ix);
	book(_h_angle[ix],2+ix,1,1);
      }
      book(_c[0],"TMP/nB0");
      book(_c[1],"TMP/nBP");
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      static const map<PdgId,unsigned int> & mode1   = { { 3122,1},{-3122,1}, { 310,1}};
      static const map<PdgId,unsigned int> & mode2   = { { 3122,1},{-3122,1}, { 321,1}};
      static const map<PdgId,unsigned int> & mode2CC = { { 3122,1},{-3122,1}, {-321,1}};
      static const map<PdgId,unsigned int> & mode3   = { { 3122,1},{-3122,1}, { 313,1}};
      static const map<PdgId,unsigned int> & mode3CC = { { 3122,1},{-3122,1}, {-313,1}};
      DecayedParticles BB = apply<DecayedParticles>(event, "BB");
      // loop over particles
      for(unsigned int ix=0;ix<BB.decaying().size();++ix) {
	if(BB.decaying()[ix].abspid()==511) _c[0]->fill();
	else                                _c[1]->fill();
	unsigned int imode=0;
	if (BB.modeMatches(ix,3,mode1))
	  imode=0;
	else if((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode2)) ||
		(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode2CC)))
	  imode=1;
	else if((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode3)) ||
		(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode3CC)))
	  imode=2;
	else
	  continue;
	int sign = BB.decaying()[ix].pid()>0 ? 1 : -1;
       	const Particle & Lam    = BB.decayProducts()[ix].at( sign*3122)[0];
       	const Particle & LamBar = BB.decayProducts()[ix].at(-sign*3122)[0];
	FourMomentum pLL = Lam.momentum()+LamBar.momentum();
	double mass = pLL.mass();
	_h_mass[imode]->fill(mass);
	// rest just in threshold region
	if(mass>2.85) continue;
	// boost to B rest frame
	LorentzTransform boost =
	  LorentzTransform::mkFrameTransformFromBeta(BB.decaying()[ix]. momentum().betaVec());
	// B+ K+
	if(imode==1) {
	  pLL = boost.transform(pLL);
	  LorentzTransform boost2 =
	    LorentzTransform::mkFrameTransformFromBeta(pLL.betaVec());
	  
	  FourMomentum pLam    = boost2.transform(boost.transform(Lam.momentum()));
	  FourMomentum pLamB   = boost2.transform(boost.transform(LamBar.momentum()));
	  const Particle & Kp  = BB.decayProducts()[ix].at( sign*321)[0];
	  FourMomentum pK      = boost2.transform(boost.transform(Kp.momentum()));
	  double cLam = pK.p3().unit().dot(pLamB.p3().unit());
	  _h_angle[1]->fill(cLam);
	  if(Lam.children().size()==2) {
	    Particle proton;
	    if(Lam.children()[0].pid()== sign*2212 &&
	       Lam.children()[1].pid()==-sign*211 ) {
	      proton = Lam.children()[0];
	    }
	    else if(Lam.children()[1].pid()== sign*2212 &&
		    Lam.children()[0].pid()==-sign*211 ){
	      proton = Lam.children()[1];
	    }
	    if(proton.pid()==sign*2212) {
	      LorentzTransform boostL =  LorentzTransform::mkFrameTransformFromBeta(pLam.betaVec());
	      FourMomentum pp = boostL.transform(boost2.transform(boost.transform(proton.momentum())));
	      double cTheta = pp.p3().unit().dot(pLam.p3().unit());
	      _h_angle[0]->fill(cTheta);
	    }
	  }
	}
	// B0 -> K*0
	else if(imode==2) {
	  const Particle & Kstar  = BB.decayProducts()[ix].at( sign*313)[0];
	  Particle KK;
	  if(Kstar.children()[0].abspid()==321 &&
	     Kstar.children()[1].abspid()==211)
	    KK = Kstar.children()[0];
	  else if(Kstar.children()[1].abspid()==321 &&
		  Kstar.children()[0].abspid()==211)
	    KK = Kstar.children()[1];
	  else continue;
	  FourMomentum pKstar = boost.transform(Kstar.momentum());
	  FourMomentum pK     = boost.transform(KK   .momentum());
	  const LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pKstar.betaVec());
	  pK = boost3.transform(pK);
	  FourMomentum pB = boost3.transform(boost.transform(BB.decaying()[ix].momentum()));
	  double cosK = -pB.p3().unit().dot(pK.p3().unit());
	  _h_angle[2]->fill(cosK);
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<3;++ix) {
	if(ix%2==0) scale(_h_mass[ix],1e6/ *_c[0]);
	else        scale(_h_mass[ix],1e6/ *_c[1]);
	normalize(_h_angle[ix]);
      }
    }

    /// @}

    /// @name Histograms
    /// @{
    Histo1DPtr _h_mass[3],_h_angle[3];
    CounterPtr _c[2];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BELLE_2009_I803343);

}