|
Rivet analyses reference
BELLE_2009_I803343
Mass and angular distributions in $B\to\Lambda^0\bar\Lambda^0 K^{(*)}$
Experiment: BELLE (KEKB)
Inspire ID: 803343
Status: VALIDATED NOHEPDATA
Authors:
References:
- Phys.Rev.D 79 (2009) 052006
Beams: * *
Beam energies: ANY
Run details:
- Any process producing B0, originally Upsilon(4S) decay
Measurement of mass and angular distributions in $B^0\to\Lambda^0\bar\Lambda^0 K^0$, $B^+\to\Lambda^0\bar\Lambda^0 K^+$ and $B^0\to\Lambda^0\bar\Lambda^0 K^{*0}$. The data for the mass spectra was read from the tables in the paper and are fully corrected, while those for the angular distributions in the threshold region were read from the figures and may not be corrected.
Source code:
BELLE_2009_I803343.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"
namespace Rivet {
/// @brief B0 -> Lambda Lambdabar K(*)0
class BELLE_2009_I803343 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2009_I803343);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
UnstableParticles ufs = UnstableParticles(Cuts::pid==511 ||
Cuts::pid==521);
declare(ufs, "UFS");
DecayedParticles BB(ufs);
BB.addStable( 3122);
BB.addStable(-3122);
BB.addStable( 310);
BB.addStable( 313);
BB.addStable(-313);
declare(BB, "BB");
// histograms
for(unsigned int ix=0;ix<3;++ix) {
book(_h_mass[ix],1,1,1+ix);
book(_h_angle[ix],2+ix,1,1);
}
book(_c[0],"TMP/nB0");
book(_c[1],"TMP/nBP");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const map<PdgId,unsigned int> & mode1 = { { 3122,1},{-3122,1}, { 310,1}};
static const map<PdgId,unsigned int> & mode2 = { { 3122,1},{-3122,1}, { 321,1}};
static const map<PdgId,unsigned int> & mode2CC = { { 3122,1},{-3122,1}, {-321,1}};
static const map<PdgId,unsigned int> & mode3 = { { 3122,1},{-3122,1}, { 313,1}};
static const map<PdgId,unsigned int> & mode3CC = { { 3122,1},{-3122,1}, {-313,1}};
DecayedParticles BB = apply<DecayedParticles>(event, "BB");
// loop over particles
for(unsigned int ix=0;ix<BB.decaying().size();++ix) {
if(BB.decaying()[ix].abspid()==511) _c[0]->fill();
else _c[1]->fill();
unsigned int imode=0;
if (BB.modeMatches(ix,3,mode1))
imode=0;
else if((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode2)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode2CC)))
imode=1;
else if((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode3)) ||
(BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode3CC)))
imode=2;
else
continue;
int sign = BB.decaying()[ix].pid()>0 ? 1 : -1;
const Particle & Lam = BB.decayProducts()[ix].at( sign*3122)[0];
const Particle & LamBar = BB.decayProducts()[ix].at(-sign*3122)[0];
FourMomentum pLL = Lam.momentum()+LamBar.momentum();
double mass = pLL.mass();
_h_mass[imode]->fill(mass);
// rest just in threshold region
if(mass>2.85) continue;
// boost to B rest frame
LorentzTransform boost =
LorentzTransform::mkFrameTransformFromBeta(BB.decaying()[ix]. momentum().betaVec());
// B+ K+
if(imode==1) {
pLL = boost.transform(pLL);
LorentzTransform boost2 =
LorentzTransform::mkFrameTransformFromBeta(pLL.betaVec());
FourMomentum pLam = boost2.transform(boost.transform(Lam.momentum()));
FourMomentum pLamB = boost2.transform(boost.transform(LamBar.momentum()));
const Particle & Kp = BB.decayProducts()[ix].at( sign*321)[0];
FourMomentum pK = boost2.transform(boost.transform(Kp.momentum()));
double cLam = pK.p3().unit().dot(pLamB.p3().unit());
_h_angle[1]->fill(cLam);
if(Lam.children().size()==2) {
Particle proton;
if(Lam.children()[0].pid()== sign*2212 &&
Lam.children()[1].pid()==-sign*211 ) {
proton = Lam.children()[0];
}
else if(Lam.children()[1].pid()== sign*2212 &&
Lam.children()[0].pid()==-sign*211 ){
proton = Lam.children()[1];
}
if(proton.pid()==sign*2212) {
LorentzTransform boostL = LorentzTransform::mkFrameTransformFromBeta(pLam.betaVec());
FourMomentum pp = boostL.transform(boost2.transform(boost.transform(proton.momentum())));
double cTheta = pp.p3().unit().dot(pLam.p3().unit());
_h_angle[0]->fill(cTheta);
}
}
}
// B0 -> K*0
else if(imode==2) {
const Particle & Kstar = BB.decayProducts()[ix].at( sign*313)[0];
Particle KK;
if(Kstar.children()[0].abspid()==321 &&
Kstar.children()[1].abspid()==211)
KK = Kstar.children()[0];
else if(Kstar.children()[1].abspid()==321 &&
Kstar.children()[0].abspid()==211)
KK = Kstar.children()[1];
else continue;
FourMomentum pKstar = boost.transform(Kstar.momentum());
FourMomentum pK = boost.transform(KK .momentum());
const LorentzTransform boost3 = LorentzTransform::mkFrameTransformFromBeta(pKstar.betaVec());
pK = boost3.transform(pK);
FourMomentum pB = boost3.transform(boost.transform(BB.decaying()[ix].momentum()));
double cosK = -pB.p3().unit().dot(pK.p3().unit());
_h_angle[2]->fill(cosK);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=0;ix<3;++ix) {
if(ix%2==0) scale(_h_mass[ix],1e6/ *_c[0]);
else scale(_h_mass[ix],1e6/ *_c[1]);
normalize(_h_angle[ix]);
}
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_mass[3],_h_angle[3];
CounterPtr _c[2];
/// @}
};
RIVET_DECLARE_PLUGIN(BELLE_2009_I803343);
}
|
|