rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

BABAR_2012_I1111233

Differential Branching ratio and asymmetries in $B\to K^{(*)}\ell^+\ell^-$
Experiment: BABAR (PEP-II)
Inspire ID: 1111233
Status: VALIDATED NOHEPDATA SINGLEWEIGHT
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 86 (2012) 032012
Beams: * *
Beam energies: ANY
Run details:
  • Any proces producing B0 and B+, originally Upsilon(4S) decays

Measurement of the differential Branching ratio and asymmetries in $B\to K^{(*)}\ell^+\ell^-$. As well as the differential branching ratio as a function of $q^2$ the ratio of $e^+e^-$ and $\mu^+\mu^-$ and isospin and CP asymmetries are measured.

Source code: BABAR_2012_I1111233.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"

namespace Rivet {


  /// @brief B -> K(*) l+ l-
  class BABAR_2012_I1111233 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BABAR_2012_I1111233);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      UnstableParticles ufs = UnstableParticles(Cuts::abspid==511 or
						Cuts::abspid==521);
      declare(ufs, "UFS");
      DecayedParticles BB(ufs);
      BB.addStable(   443);
      BB.addStable(100443);
      BB.addStable( 310);
      BB.addStable( 313);
      BB.addStable( 323);
      BB.addStable(-313);
      BB.addStable(-323);
      declare(BB, "BB");
      // histograms
      for(unsigned int ix=0;ix<2;++ix) {
	for(unsigned int iy=0;iy<2;++iy) {
	  book(_h_br[ix][iy],1,1+ix,1+iy);
	  book(_p_CP[ix][iy],2,1+ix,1+iy);
	  for(unsigned int il=0;il<2;++il) {
	    book(_h_br_l[il][ix][iy],"TMP/h_br_l_"+toString(il)+"_"+toString(ix)+"_"+toString(iy),
		 refData(3,1+ix,1+iy));
	    book(_h_br_I[il][ix][iy],"TMP/h_br_I_"+toString(il)+"_"+toString(ix)+"_"+toString(iy),
		 refData(4,1+ix,1+iy));
	  }
	}
      }
      for(unsigned int ix=0;ix<3;++ix)
	book(_c[ix],"TMP/c_"+toString(ix+1));
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // kaon modes
      static const map<PdgId,unsigned int> & mode1   = { { 321,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode1CC = { {-321,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode2   = { { 310,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode3   = { { 321,1},{ 11,1}, {-11,1}};
      static const map<PdgId,unsigned int> & mode3CC = { {-321,1},{ 11,1}, {-11,1}};
      static const map<PdgId,unsigned int> & mode4   = { { 310,1},{ 11,1}, {-11,1}};
      // K* modes
      static const map<PdgId,unsigned int> & mode5   = { { 323,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode5CC = { {-323,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode6   = { { 313,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode6CC = { {-313,1},{ 13,1}, {-13,1}};
      static const map<PdgId,unsigned int> & mode7   = { { 323,1},{ 11,1}, {-11,1}};
      static const map<PdgId,unsigned int> & mode7CC = { {-323,1},{ 11,1}, {-11,1}};
      static const map<PdgId,unsigned int> & mode8   = { { 313,1},{ 11,1}, {-11,1}};
      static const map<PdgId,unsigned int> & mode8CC = { {-313,1},{ 11,1}, {-11,1}};
      DecayedParticles BB = apply<DecayedParticles>(event, "BB");
      // loop over particles
      for(unsigned int ix=0;ix<BB.decaying().size();++ix) {
	_c[0]->fill();
	if(BB.decaying()[ix].abspid()==521) _c[1]->fill();
	else                                _c[2]->fill();
	int imode=0;
	if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode1)) ||
	    (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode1CC)))      imode=0;
	else if (BB.modeMatches(ix,3,mode2))                                  imode=1;
	else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode3)) ||
		 (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode3CC))) imode=2;
	else if (BB.modeMatches(ix,3,mode4))                                  imode=3;
      	else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode5)) ||
		 (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode5CC))) imode=4;
	else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode6)) ||
		 (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode6CC))) imode=5;
      	else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode7)) ||
		 (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode7CC))) imode=6;
      	else if ((BB.decaying()[ix].pid()>0 && BB.modeMatches(ix,3,mode8)) ||
		 (BB.decaying()[ix].pid()<0 && BB.modeMatches(ix,3,mode8CC))) imode=7;
      	else continue;
	int il = imode<2 || imode==4 || imode==5 ? 13 : 11;
	const Particle & lp = BB.decayProducts()[ix].at(-il)[0];
	const Particle & lm = BB.decayProducts()[ix].at( il)[0];
	double qq = (lp.momentum()+lm.momentum()).mass2();
	double ACP = BB.decaying()[ix].pid()>0 ? -1. : 1.;
	if(imode<4) {
	  double wgt = (imode==1||imode==3) ? 2 : 1;
	  for(unsigned int iy=0;iy<2;++iy) {
	    _h_br[iy][0]->fill(qq,wgt);
	    _p_CP[iy][0]->fill(qq,ACP,wgt);
	    if(il==13) _h_br_l[0][iy][0]->fill(qq,wgt);
	    else       _h_br_l[1][iy][0]->fill(qq,wgt);
	    if(BB.decaying()[ix].abspid()==521)
	      _h_br_I[0][iy][0]->fill(qq,wgt);
	    else
	      _h_br_I[1][iy][0]->fill(qq,wgt);
	  }
	}
	else {
	  for(unsigned int iy=0;iy<2;++iy) {
	    _h_br[iy][1]->fill(qq);
	    _p_CP[iy][1]->fill(qq,ACP);
	    if(BB.decaying()[ix].abspid()==521)
	      _h_br_I[0][iy][1]->fill(qq);
	    else
	      _h_br_I[1][iy][1]->fill(qq);
	    if(il==13) _h_br_l[0][iy][1]->fill(qq);
	    else       _h_br_l[1][iy][1]->fill(qq);
	  }
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      // ratio of lifetimes
      double rLife = 1./1.078;
      for(unsigned int ix=0;ix<2;++ix) {
      	for(unsigned int iy=0;iy<2;++iy) {
	  scale(_h_br[ix][iy],1e7/ *_c[0]);
	  for(unsigned int il=0;il<2;++il) {
	    scale(_h_br_l[il][ix][iy],1e7/ *_c[0]);
	    scale(_h_br_I[il][ix][iy],1e7/ *_c[il+1]);
	    if (il==0) scale(_h_br_I[il][ix][iy],rLife);
	  }
	  // RK plots
	  Scatter2DPtr RK;
	  book(RK,3,1+ix,1+iy);
	  divide(_h_br_l[0][ix][iy],_h_br_l[1][ix][iy],RK);
	  book(RK,4,1+ix,1+iy);
	  asymm(_h_br_I[1][ix][iy],_h_br_I[0][ix][iy],RK);
	}
      }
    }

    /// @}


    /// @name Histograms
    /// @{
    Histo1DPtr _h_br[2][2],_h_br_l[2][2][2],_h_br_I[2][2][2];
    Profile1DPtr _p_CP[2][2];
    CounterPtr _c[3];
    /// @}


  };


  RIVET_DECLARE_PLUGIN(BABAR_2012_I1111233);

}