1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108 | // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/DecayedParticles.hh"
namespace Rivet {
/// @brief D0 -> KS0 pi+pi- and K+K-
class BABAR_2010_I853279 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BABAR_2010_I853279);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
UnstableParticles ufs = UnstableParticles(Cuts::abspid==421);
declare(ufs, "UFS");
DecayedParticles D0(ufs);
D0.addStable(PID::PI0);
D0.addStable(PID::K0S);
D0.addStable(PID::ETA);
D0.addStable(PID::ETAPRIME);
declare(D0, "D0");
// Histograms
book(_h_Kpim,1,1,1);
book(_h_Kpip,1,1,2);
book(_h_pipi,1,1,3);
book(_dalitz[0], "dalitz1",50,0.3,3.2,50,0.3,3.2);
book(_h_K0Km,1,1,4);
book(_h_K0Kp,1,1,5);
book(_h_KpKm,1,1,6);
book(_dalitz[1], "dalitz2",50,0.9,1.9,50,0.9,1.9);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// define the decay mode
static const map<PdgId,unsigned int> & modePi = { { 310,1}, { 211,1},{-211,1}};
static const map<PdgId,unsigned int> & modeK = { { 310,1}, { 321,1},{-321,1}};
DecayedParticles D0 = apply<DecayedParticles>(event, "D0");
// loop over particles
for(unsigned int ix=0;ix<D0.decaying().size();++ix) {
int sign = D0.decaying()[ix].pid()/421;
// KS0 pi+pi-
if (D0.modeMatches(ix,3,modePi) ) {
const Particles & pip= D0.decayProducts()[ix].at( sign*211);
const Particles & pim= D0.decayProducts()[ix].at(-sign*211);
const Particles & K0 = D0.decayProducts()[ix].at( 310);
double mminus = (pim[0].momentum()+K0[0].momentum() ).mass2();
double mplus = (pip[0].momentum()+K0[0].momentum() ).mass2();
double mpipi = (pip[0].momentum()+pim[0].momentum()).mass2();
_h_Kpip->fill(mplus);
_h_Kpim->fill(mminus);
_h_pipi->fill(mpipi);
_dalitz[0]->fill(mminus,mplus);
}
else if (D0.modeMatches(ix,3,modeK) ) {
const Particles & Kp = D0.decayProducts()[ix].at( sign*321);
const Particles & Km = D0.decayProducts()[ix].at(-sign*321);
const Particles & K0 = D0.decayProducts()[ix].at( 310);
double mminus = (Km[0].momentum()+K0[0].momentum() ).mass2();
double mplus = (Kp[0].momentum()+K0[0].momentum() ).mass2();
double mKK = (Kp[0].momentum()+Km[0].momentum()).mass2();
_h_K0Kp->fill(mplus);
_h_K0Km->fill(mminus);
_h_KpKm->fill(mKK);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_Kpim);
normalize(_h_Kpip);
normalize(_h_pipi);
normalize(_dalitz[0]);
normalize(_h_K0Km);
normalize(_h_K0Kp);
normalize(_h_KpKm);
normalize(_dalitz[1]);
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_Kpim,_h_pipi,_h_Kpip;
Histo1DPtr _h_K0Km,_h_KpKm,_h_K0Kp;
Histo2DPtr _dalitz[2];
/// @}
};
RIVET_DECLARE_PLUGIN(BABAR_2010_I853279);
}
|