rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

ATLAS_2019_I1772071

Measurement of isolated-photon plus two-jet production
Experiment: ATLAS (LHC)
Inspire ID: 1772071
Status: VALIDATED
Authors:
  • Ana Rosario Cueto Gomez
  • Deepak Kar
References: Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • photon+jet production at 13 TeV

The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma$ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

Source code: ATLAS_2019_I1772071.cc
  1// -*- C++ -*-
  2#include "Rivet/Analysis.hh"
  3#include "Rivet/Projections/FinalState.hh"
  4#include "Rivet/Projections/VisibleFinalState.hh"
  5#include "Rivet/Projections/VetoedFinalState.hh"
  6#include "Rivet/Projections/PromptFinalState.hh"
  7#include "Rivet/Projections/FastJets.hh"
  8
  9namespace Rivet {
 10
 11
 12  /// @brief Isolated photon + 2 jets at 13 TeV
 13  class ATLAS_2019_I1772071 : public Analysis {
 14  public:
 15
 16    // Constructor
 17    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2019_I1772071);
 18
 19    // Book histograms and initialise projections before the run
 20    void init() {
 21      const FinalState fs;
 22
 23      // calorimeter particles
 24      VisibleFinalState visFS(fs);
 25      VetoedFinalState calo_fs(visFS);
 26      calo_fs.addVetoPairId(PID::MUON);
 27      declare(calo_fs, "calo");
 28
 29      // Voronoi eta-phi tessellation with KT jets, for ambient energy density calculation
 30      FastJets fj(fs, JetAlg::KT, 0.5, JetMuons::NONE, JetInvisibles::NONE); // E-scheme used by default;
 31      fj.useJetArea(new fastjet::AreaDefinition(fastjet::voronoi_area, fastjet::VoronoiAreaSpec(1.0)));
 32      declare(fj, "KtJetsD05");
 33
 34      // photon
 35      PromptFinalState photonfs(Cuts::abspid == PID::PHOTON && Cuts::abseta < 2.37 && Cuts::pT > 150*GeV);
 36      declare(photonfs, "photons");
 37
 38      // Jets
 39      FastJets jetpro(fs,  JetAlg::ANTIKT, 0.4, JetMuons::NONE, JetInvisibles::NONE);
 40      declare(jetpro, "Jets");
 41
 42
 43      vector<string> observables = {"ETGamma", "pTjet", "RapJet","DeltaRapGammaJet",
 44                                    "DeltaPhiGammaJet", "DeltaRapJetJet", "DeltaPhiJetJet",
 45                                    "MassJetJet", "MassGammaJetJet"};
 46      vector<string> regions = {"Inclusive","Fragmentation", "Direct"};
 47
 48      int i=0;
 49      for (const string& region : regions){
 50        int j = 1;
 51	      for (const string& name : observables) {
 52	        book(_h[name+region], 9*i+j, 1, 1);
 53	        ++j;
 54	      }
 55	      ++i;
 56      }
 57    }
 58
 59
 60    size_t getEtaBin(double eta) const {
 61      return binIndex(fabs(eta), _eta_bins_areaoffset);
 62    }
 63
 64
 65    // Perform the per-event analysis
 66    void analyze(const Event& event) {
 67
 68      // Get the photon
 69      const Particles& photons = apply<PromptFinalState>(event, "photons").particlesByPt(Cuts::abseta < 1.37 || Cuts::abseta > 1.56);
 70      if (photons.empty())  vetoEvent;
 71      const FourMomentum photon = photons[0].momentum();
 72
 73      // Get the jet
 74      Jets jets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::pT > 100*GeV && Cuts::absrap < 2.5);
 75      idiscard(jets, deltaRLess(photon, 0.8));
 76      if ( jets.size()<2 )  vetoEvent;
 77      FourMomentum leadingJet = jets[0].momentum();
 78      FourMomentum subleadingJet = jets[1].momentum();
 79
 80      // Compute the jet pT densities
 81      vector< vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
 82      FastJets fastjets = apply<FastJets>(event, "KtJetsD05");
 83      const auto clust_seq_area = fastjets.clusterSeqArea();
 84      for (const Jet& jet : fastjets.jets()) {
 85        const double area = clust_seq_area->area(jet); // Implicit call to pseudojet().
 86        //const double area2 = (clust_seq_area->area_4vector(jet)).perp(); // Area definition used in egammaTruthParticles.
 87        if (area > 1e-3 && jet.abseta() < _eta_bins_areaoffset.back()) {
 88          ptDensities.at(getEtaBin(jet.abseta())) += jet.pT()/area;
 89        }
 90      }
 91
 92      // Compute the median event energy density
 93      vector<double> ptDensity;
 94      for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
 95        ptDensity += ptDensities[b].empty() ? 0 : median(ptDensities[b]);
 96      }
 97
 98      // Compute photon isolation with a standard ET cone
 99      FourMomentum mom_in_EtCone;
100      const Particles calo_fs = apply<VetoedFinalState>(event, "calo").particles();
101      const double iso_dr = 0.4;
102      for (const Particle& p : calo_fs) {
103        // Check if it's in the cone of .4
104        if (sqrt(2.0*(cosh(p.eta()-photon.eta()) - cos(p.phi()-photon.phi()))) >= iso_dr) continue;
105        // Increment sum
106        mom_in_EtCone += p.momentum();
107      }
108
109      // Remove the photon energy from the isolation
110      mom_in_EtCone -= photon;
111
112      // Figure out the correction (area*density)
113      const double etcone_area = PI*iso_dr*iso_dr;
114      const double correction = ptDensity[getEtaBin(photon.abseta())] * etcone_area;
115      // Require photon to be isolated
116      if ((mom_in_EtCone.Et()-correction) > (0.0042*photon.pT() + 10*GeV))  vetoEvent;
117
118      // Fill histos
119      const double photon_pt = photon.pT()/GeV;
120      const double jet_pt1 = leadingJet.pT()/GeV;
121      const double jet_pt2 = subleadingJet.pT()/GeV;
122      const double jet1_y = leadingJet.rapidity();
123      const double jet2_y = subleadingJet.rapidity();
124      const double phjet1_dphi = deltaPhi(photon, leadingJet);
125      const double phjet2_dphi = deltaPhi(photon, subleadingJet);
126      const double phjet1_drap = fabs(photon.eta()-leadingJet.rapidity());
127      const double phjet2_drap = fabs(photon.eta()-subleadingJet.rapidity());
128      const double jetjet_drap = fabs(leadingJet.rapidity()-subleadingJet.rapidity());
129      const FourMomentum jetjet = leadingJet+subleadingJet;
130      const double mjetjet = jetjet.mass()/GeV;
131      const FourMomentum phjet1 = photon+leadingJet;
132      const FourMomentum phjet2 = photon+subleadingJet;
133      const FourMomentum phjetjet = photon+leadingJet+subleadingJet;
134      const double mphjetjet = phjetjet.mass()/GeV;
135      const double jetjet_dphi = deltaPhi(subleadingJet, leadingJet);
136
137      _h["ETGammaInclusive"]->fill(photon_pt);
138      _h["pTjetInclusive"]->fill(jet_pt1);
139      _h["pTjetInclusive"]->fill(jet_pt2);
140      _h["RapJetInclusive"]->fill(fabs(jet1_y));
141      _h["RapJetInclusive"]->fill(fabs(jet2_y));
142      _h["DeltaRapGammaJetInclusive"]->fill(phjet1_drap);
143      _h["DeltaRapGammaJetInclusive"]->fill(phjet2_drap);
144      _h["DeltaPhiGammaJetInclusive"]->fill(phjet1_dphi);
145      _h["DeltaPhiGammaJetInclusive"]->fill(phjet2_dphi);
146      _h["MassJetJetInclusive"]->fill(mjetjet);
147      _h["DeltaPhiJetJetInclusive"]->fill(jetjet_dphi);
148      _h["DeltaRapJetJetInclusive"]->fill(jetjet_drap);
149      _h["MassGammaJetJetInclusive"]->fill(mphjetjet);
150
151      if (photon_pt>jet_pt1) {
152        _h["ETGammaDirect"]->fill(photon_pt);
153        _h["pTjetDirect"]->fill(jet_pt1);
154        _h["pTjetDirect"]->fill(jet_pt2);
155        _h["RapJetDirect"]->fill(fabs(jet1_y));
156        _h["RapJetDirect"]->fill(fabs(jet2_y));
157        _h["DeltaRapGammaJetDirect"]->fill(phjet1_drap);
158        _h["DeltaRapGammaJetDirect"]->fill(phjet2_drap);
159        _h["DeltaPhiGammaJetDirect"]->fill(phjet1_dphi);
160        _h["DeltaPhiGammaJetDirect"]->fill(phjet2_dphi);
161        _h["MassJetJetDirect"]->fill(mjetjet);
162        _h["DeltaPhiJetJetDirect"]->fill(jetjet_dphi);
163        _h["DeltaRapJetJetDirect"]->fill(jetjet_drap);
164        _h["MassGammaJetJetDirect"]->fill(mphjetjet);
165
166      }
167      else if (photon_pt < jet_pt2)	{
168        _h["ETGammaFragmentation"]->fill(photon_pt);
169        _h["pTjetFragmentation"]->fill(jet_pt1);
170        _h["pTjetFragmentation"]->fill(jet_pt2);
171        _h["RapJetFragmentation"]->fill(fabs(jet1_y));
172        _h["RapJetFragmentation"]->fill(fabs(jet2_y));
173        _h["DeltaRapGammaJetFragmentation"]->fill(phjet1_drap);
174        _h["DeltaRapGammaJetFragmentation"]->fill(phjet2_drap);
175        _h["DeltaPhiGammaJetFragmentation"]->fill(phjet1_dphi);
176        _h["DeltaPhiGammaJetFragmentation"]->fill(phjet2_dphi);
177        _h["MassJetJetFragmentation"]->fill(mjetjet);
178        _h["DeltaPhiJetJetFragmentation"]->fill(jetjet_dphi);
179        _h["DeltaRapJetJetFragmentation"]->fill(jetjet_drap);
180        _h["MassGammaJetJetFragmentation"]->fill(mphjetjet);
181      }
182    }
183
184
185    /// Normalise histograms etc., after the run
186    void finalize() {
187      const double sf = crossSection() / picobarn / sumOfWeights();
188	    scale(_h, sf);
189    }
190
191
192  private:
193
194    map<string,Histo1DPtr> _h;
195    const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0, 4.0, 5.0};
196
197  };
198
199  RIVET_DECLARE_PLUGIN(ATLAS_2019_I1772071);
200
201}