rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

AMY_1990_I298238

Measurement of the $\tau$ polarization at $E_{\text{CMS}}=57$ GeV
Experiment: AMY (Tristan)
Inspire ID: 298238
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • KEK-PREPRINT-90-70, AMY-90-9
Beams: e+ e-
Beam energies: (28.5, 28.5) GeV
Run details:
  • e+ e- > tau+ tau-

Measurement of the $\tau$ lepton polarization in $e^+e^-\to\tau^+\tau^-$ at $E_{\text{CMS}}=57$ GeV by the AMY collaboration at Tristan.

Source code: AMY_1990_I298238.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief  tau polarization at 57 GeV
  class AMY_1990_I298238 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(AMY_1990_I298238);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      declare(ChargedFinalState(), "FS");
      declare(UnstableParticles(), "UFS");
      // book histos
      book(_h_e  ,"_t_e " , 20,-1,1);
      book(_h_mu ,"_t_mu" , 20,-1,1);
      book(_h_pi ,"_t_pi" , 20,-1,1);
      book(_h_rho,"_t_rho", 20,-1,1);
    }

    void findTau(const Particle & p, unsigned int & nprod,
     		 Particles & piP,Particles & pi0, Particles & ell, Particles & nu_ell,
		 Particles & nu_tau) {
      for(const Particle & child : p.children()) {
	if(child.pid()==PID::ELECTRON || child.pid()==PID::MUON) {
	  ++nprod;
	  ell.push_back(child);
	}
	else if(child.pid()==PID::NU_EBAR || child.pid()==PID::NU_MUBAR) {
	  ++nprod;
	  nu_ell.push_back(child);
	}
	else if(child.pid()==PID::PIMINUS) {
	  ++nprod;
	  piP.push_back(child);
	}
	else if(child.pid()==PID::PI0) {
	  ++nprod;
	  pi0.push_back(child);
	}
	else if(child.pid()==PID::NU_TAU) {
	  ++nprod;
	  nu_tau.push_back(child);
	}
	else if(child.pid()==PID::GAMMA)
	  continue;
	else if(child.children().empty() || child.pid()==221 || child.pid()==331) {
	  ++nprod;
	}
	else {
	  findTau(child,nprod,piP,pi0,ell,nu_ell,nu_tau);
	}
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // require 2 chanrged particles to veto hadronic events
      if(apply<ChargedFinalState>(event, "FS").particles().size()!=2) vetoEvent;
      // loop over tau leptons
      for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::pid==15)) {
	unsigned int nprod(0);
	Particles piP, pi0, ell, nu_ell, nu_tau;
	findTau(p,nprod,piP, pi0, ell, nu_ell, nu_tau);
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(p.momentum().betaVec());
	if(nprod==2 && nu_tau.size()==1 && piP.size()==1) {
	  FourMomentum pPi = boost1.transform(piP[0].momentum());
	  double cTheta = pPi.p3().unit().dot(p.momentum().p3().unit());
	  _h_pi->fill(cTheta);
	}
	else if(nprod==3 && nu_tau.size()==1 && ell.size()==1 && nu_ell.size()==1) {
	  if(ell[0].pid()==PID::ELECTRON) {
	    _h_e ->fill(2.*ell[0].momentum().t()/sqrtS());
	  }
	  else {
	    _h_mu->fill(2.*ell[0].momentum().t()/sqrtS());
	  }
	}
	else if(nprod==3 && nu_tau.size()==1 && piP.size()==1&& pi0.size()==1) {
	  FourMomentum pRho = boost1.transform(piP[0].momentum()+pi0[0].momentum());
	  double cTheta = pRho.p3().unit().dot(p.momentum().p3().unit());
	  _h_rho->fill(cTheta);
	}
      }
    }
    
    pair<double,double> calcP(Histo1DPtr hist,unsigned int imode) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai(0.),bi(0.);
	// tau -> pi/rho nu
	if(imode==0) {
	  ai = 0.5*(bin.xMax()-bin.xMin());
	  bi = 0.5*ai*(bin.xMax()+bin.xMin());
	}
	// lepton mode
	else {
	  ai = (-5*bin.xMin() + 3*pow(bin.xMin(),3) -   pow(bin.xMin(),4) + 5*bin.xMax() - 3*pow(bin.xMax(),3) +   pow(bin.xMax(),4))/3.;
	  bi = (  -bin.xMin() + 3*pow(bin.xMin(),3) - 2*pow(bin.xMin(),4) +   bin.xMax() - 3*pow(bin.xMax(),3) + 2*pow(bin.xMax(),4))/3.;
	}
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      Scatter2DPtr h_P;
      book(h_P,1,1,1);
      normalize(_h_e);
      pair<double,double> P_e  = calcP(_h_e,1);
      double s1 = P_e.first/sqr(P_e.second);
      double s2 = 1./sqr(P_e.second);
      normalize(_h_mu);
      pair<double,double> P_mu = calcP(_h_mu,1);
      s1 += P_mu.first/sqr(P_mu.second);
      s2 += 1./sqr(P_mu.second);
      normalize(_h_pi);
      pair<double,double> P_pi = calcP(_h_pi,0);
      s1 += P_pi.first/sqr(P_pi.second);
      s2 += 1./sqr(P_pi.second);
      normalize(_h_rho);
      pair<double,double> P_rho = calcP(_h_rho,0);
      s1 += P_rho.first/sqr(P_rho.second);
      s2 += 1./sqr(P_rho.second);
      P_rho.first  /=0.46;
      P_rho.second /=0.46;
      // average
      pair<double,double> P_aver = make_pair(s1/s2,sqrt(1./s2));
      h_P->addPoint(0.5,P_aver.first, make_pair(0.5,0.5),
		    make_pair(P_aver.second,P_aver.second));
    }

    ///@}


    /// @name Histograms
    ///@{
    Histo1DPtr _h_e,_h_mu,_h_pi,_h_rho;
    ///@}


  };


  DECLARE_RIVET_PLUGIN(AMY_1990_I298238);

}