
MC analysis with Rivet

Andy Buckley, University of Glasgow
ATLAS UK annual meeting, 10 Jan 2020

Rivet
Rivet is an analysis system for MC events, and lots of analyses

I Easy and powerful way to get physics
numbers & plots from any MC gen

Only requirement: use HepMC event record
Intentionally unaware of who made the
event ⇒ don’t “look inside” the event graph
“If you can’t write a Rivet analysis for it, it’s
probably unphysical”!

I LHC standard to preserve & re-run
measurement analysis logic

Key input to MC validation, MC tuning, and
BSM interpretation (Contur, TopFitter)
Add your analyses, too!

I Technical details:

C++ library with Python interface & scripts
Analyses are “plugins”: no need to rebuild
Clean interface for ease & expressiveness;
efficiency tricks under the hood

analyses over time:

2007 2009 2011 2013 2015 2017 2019
Year

0

200

400

600

800

an

al
ys

es

NB. glitch from Rivet
1.x→ 2.x migration.

Note recent steps!

Andy Buckley 2/47

Rivet
Rivet is an analysis system for MC events, and lots of analyses

I Easy and powerful way to get physics
numbers & plots from any MC gen

Only requirement: use HepMC event record
Intentionally unaware of who made the
event ⇒ don’t “look inside” the event graph
“If you can’t write a Rivet analysis for it, it’s
probably unphysical”!

I LHC standard to preserve & re-run
measurement analysis logic

Key input to MC validation, MC tuning, and
BSM interpretation (Contur, TopFitter)
Add your analyses, too!

I Technical details:

C++ library with Python interface & scripts
Analyses are “plugins”: no need to rebuild
Clean interface for ease & expressiveness;
efficiency tricks under the hood

analyses over time:

2007 2009 2011 2013 2015 2017 2019
Year

0

200

400

600

800

an

al
ys

es

NB. glitch from Rivet
1.x→ 2.x migration.

Note recent steps!

Andy Buckley 3/47

Rivet
Rivet is an analysis system for MC events, and lots of analyses

I Easy and powerful way to get physics
numbers & plots from any MC gen

Only requirement: use HepMC event record
Intentionally unaware of who made the
event ⇒ don’t “look inside” the event graph
“If you can’t write a Rivet analysis for it, it’s
probably unphysical”!

I LHC standard to preserve & re-run
measurement analysis logic

Key input to MC validation, MC tuning, and
BSM interpretation (Contur, TopFitter)
Add your analyses, too!

I Technical details:
C++ library with Python interface & scripts
Analyses are “plugins”: no need to rebuild
Clean interface for ease & expressiveness;
efficiency tricks under the hood

analyses over time:

2007 2009 2011 2013 2015 2017 2019
Year

0

200

400

600

800

an

al
ys

es

NB. glitch from Rivet
1.x→ 2.x migration.

Note recent steps!

Andy Buckley 4/47

Why wouldn’t we want to look at the event graph?!
A Pythia8 t̄t event!

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

Andy Buckley 5/47

Rivet setup

Local install
Easy to install using our bootstrap script:
wget https://gitlab.com/hepcedar/rivetbootstrap/raw/3.1.0/rivet-bootstrap

bash rivet-bootstrap

Latest version is 3.1.0. Requires C++14. On lxplus, first run e.g.:
source /cvmfs/sft.cern.ch/lcg/releases/LCG 96/Python/2.7.16/x86 64-centos7-gcc62-opt/Python-env.sh

export PATH=/cvmfs/sft.cern.ch/lcg/external/texlive/2016/bin/x86 64-linux:$PATH

Docker install
Super-easy to install:
docker pull hepstore/rivet
docker run -it -v ’’$PWD:/out’’ hepstore/rivet

or, for this tutorial
docker run -it -v ’’$PWD:/out’’ hepstore/rivet-tutorial

The -v flag allows you to map your current host dir to /out in the container, for ease of
communication between host and VM. See also docker copy

See https://gitlab.com/hepcedar/rivet/blob/master/doc/tutorials/installation.md
Andy Buckley 6/47

https://gitlab.com/hepcedar/rivet/blob/master/doc/tutorials/installation.md

Running Rivet in/via the ATLAS software

Rivet is interfaced to the ATLAS Athena framework: see
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/RivetForAtlas for all
sorts of guidance

Basic setup:
setupATLAS

lsetup asetup

asetup 21.6.10,AthGeneration

source setupRivet.sh

rivet --version ⇐ another way to get command-line Rivet

For running in vanilla athena:
Get the example Athena job option from here, then:
athena jobOptions.rivet.py

Or built-in to running ATLAS generators:
Generate tf.py ... --rivetAnas=MC GENERIC,MC JETS...

Andy Buckley 7/47

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/RivetForAtlas
https://gitlab.cern.ch/atlas/athena/raw/21.6/Generators/Rivet_i/share/example/jobOptions.rivet.py

First Rivet runs

Andy Buckley 8/47

Running Rivet

I rivet command line tool to query
available analyses

I Can be used as a library (e.g. in big
experiment software frameworks)

I Can also be used from the command
line to read HepMC ASCII
files/pipes: very convenient

I Helper scripts like rivet-mkhtml,
rivet-mkanalysis, rivet-build

I Histogram comparisons, HTML
plot-albums, etc. very easy

Docs online at http://rivet.hepforge.org — HTML analysis details and
Doxygen.

Andy Buckley 9/47

http://rivet.hepforge.org
http://rivet.hepforge.org/analyses
http://rivet.hepforge.org/code/dev/

Viewing available analyses

Rivet knows all sorts of details about its analyses:

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses ATLAS

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC

The HTML documentation is also built from this info, so is always
synchronised.

The analysis metadata is provided via the analysis API and usually read from a .info

file which accompanies the analysis.

Andy Buckley 10/47

http://rivet.hepforge.org/analyses

Running a simple analysis

To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo fifo.hepmc

You can also just use a file but it’ll be big.
NB. A FIFO has to live in a non-AFS dir, e.g. mkfifo /tmp/$USER/fifo.hepmc

I’m going to use the Sacrifice frontend to run Pythia 8 for
demonstration — use the same or run any other generator that you
like with HepMC output going to the FIFO:
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

Now attach Rivet to the other end of the pipe:
rivet -a MC GENERIC -a MC JETS fifo.hepmc

Hopefully that worked!

By default histos are written every 1000 events: can monitor progress
through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 11/47

http://agile.hepforge.org/svn/contrib/Sacrifice/

Running a simple analysis

To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo fifo.hepmc

You can also just use a file but it’ll be big.
NB. A FIFO has to live in a non-AFS dir, e.g. mkfifo /tmp/$USER/fifo.hepmc

I’m going to use the Sacrifice frontend to run Pythia 8 for
demonstration — use the same or run any other generator that you
like with HepMC output going to the FIFO:
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

Now attach Rivet to the other end of the pipe:
rivet -a MC GENERIC -a MC JETS fifo.hepmc

Hopefully that worked!

By default histos are written every 1000 events: can monitor progress
through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 12/47

http://agile.hepforge.org/svn/contrib/Sacrifice/

Running a simple analysis

To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo fifo.hepmc

You can also just use a file but it’ll be big.
NB. A FIFO has to live in a non-AFS dir, e.g. mkfifo /tmp/$USER/fifo.hepmc

I’m going to use the Sacrifice frontend to run Pythia 8 for
demonstration — use the same or run any other generator that you
like with HepMC output going to the FIFO:
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

Now attach Rivet to the other end of the pipe:
rivet -a MC GENERIC -a MC JETS fifo.hepmc

Hopefully that worked!

By default histos are written every 1000 events: can monitor progress
through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 13/47

http://agile.hepforge.org/svn/contrib/Sacrifice/

Running a simple analysis

To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo fifo.hepmc

You can also just use a file but it’ll be big.
NB. A FIFO has to live in a non-AFS dir, e.g. mkfifo /tmp/$USER/fifo.hepmc

I’m going to use the Sacrifice frontend to run Pythia 8 for
demonstration — use the same or run any other generator that you
like with HepMC output going to the FIFO:
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

Now attach Rivet to the other end of the pipe:
rivet -a MC GENERIC -a MC JETS fifo.hepmc

Hopefully that worked!

By default histos are written every 1000 events: can monitor progress
through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 14/47

http://agile.hepforge.org/svn/contrib/Sacrifice/

Example output

$ run-pythia -e 7000 -c HardQCD:all=on -c PhaseSpace:pThatMin=80
-c ParticleDecays:limitTau0=on -n 10000 -o fifo.hepmc &

$ rivet -a CMS 2013 I1265659 fifo.hepmc

$ rivet-mkhtml Rivet.yoda:’Py8\star’

BEGIN YODA_HISTO1D /CMS_2013_I1265659/d01-x01-y02
Path=/CMS_2013_I1265659/d01-x01-y02
ScaledBy=0.00018488029661016948
Title=
Type=Histo1D
XLabel=
YLabel=
Mean: 1.886500e+00
Area: 1.745270e-01
xlow xhigh sumw sumw2 sumwx sumwx2 numEntries
Total Total 1.745270e-01 3.226660e-05 3.292452e-01 7.563865e-01 944
Underflow Underflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
Overflow Overflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
1.001800e-04 1.746272e-01 4.622007e-03 8.545181e-07 3.464255e-04 3.868572e-05 25
1.746276e-01 3.491546e-01 6.101050e-03 1.127964e-06 1.634274e-03 4.481578e-04 33
3.491549e-01 5.236819e-01 6.840571e-03 1.264687e-06 2.938932e-03 1.279250e-03 37
5.236823e-01 6.982093e-01 7.395212e-03 1.367229e-06 4.569311e-03 2.838956e-03 40
6.982097e-01 8.727367e-01 6.285930e-03 1.162145e-06 4.880735e-03 3.805391e-03 34
8.727370e-01 1.047264e+00 6.470810e-03 1.196325e-06 6.237378e-03 6.024974e-03 35
1.047265e+00 1.221791e+00 7.395212e-03 1.367229e-06 8.247895e-03 9.216318e-03 40

.

.

.
END YODA_HISTO1D

Andy Buckley 15/47

Plotting histograms

Rivet uses custom “YODA” stats library – http://yoda.hepforge.org

I YODA stores all second-order statistical moments: can do full stat
merging, compute all means and variances

I Plus general metadata annotation system — styling, notes,
whatever — and evolution of data types optimised for MC

CLI tools: yodals, yodadiff, yodamerge, yodascale, yoda2root, etc.

Plotting .yoda files is easy: rivet-mkhtml mc1.yoda mc2.yoda ...

Advanced: rivet-mkhtml Rivet.yoda:’Pythia\,8 $t\bar{t}$’

or, if you want complete control:
rivet-cmphistos Rivet.yoda:’My title’:LineColor=red && make-plots *.dat

Then view with a web browser/file browser/. . .
NB. A --help option is available for all Rivet scripts.

Andy Buckley 16/47

http://yoda.hepforge.org

Plotting histograms

Rivet uses custom “YODA” stats library – http://yoda.hepforge.org

I YODA stores all second-order statistical moments: can do full stat
merging, compute all means and variances

I Plus general metadata annotation system — styling, notes,
whatever — and evolution of data types optimised for MC

CLI tools: yodals, yodadiff, yodamerge, yodascale, yoda2root, etc.

Plotting .yoda files is easy: rivet-mkhtml mc1.yoda mc2.yoda ...

Advanced: rivet-mkhtml Rivet.yoda:’Pythia\,8 $t\bar{t}$’

or, if you want complete control:
rivet-cmphistos Rivet.yoda:’My title’:LineColor=red && make-plots *.dat

Then view with a web browser/file browser/. . .
NB. A --help option is available for all Rivet scripts.

Andy Buckley 17/47

http://yoda.hepforge.org

Plotting histograms

Rivet uses custom “YODA” stats library – http://yoda.hepforge.org

I YODA stores all second-order statistical moments: can do full stat
merging, compute all means and variances

I Plus general metadata annotation system — styling, notes,
whatever — and evolution of data types optimised for MC

CLI tools: yodals, yodadiff, yodamerge, yodascale, yoda2root, etc.

Plotting .yoda files is easy: rivet-mkhtml mc1.yoda mc2.yoda ...

Advanced: rivet-mkhtml Rivet.yoda:’Pythia\,8 $t\bar{t}$’

or, if you want complete control:
rivet-cmphistos Rivet.yoda:’My title’:LineColor=red && make-plots *.dat

Then view with a web browser/file browser/. . .
NB. A --help option is available for all Rivet scripts.

Andy Buckley 18/47

http://yoda.hepforge.org

Example plot output
zcat tt-20k.hepmc.gz | rivet -a
ATLAS 2015 I1376945,CMS 2015 I1370682,CMS 2016 I1473674

$ rivet-mkhtml Rivet.yoda:’Py8\star’

b

b

b

b

b

b
b b

Datab

Py8 ⋆

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

CMS, tt̄ → bblνjj,
√

s= 8 TeV.
1/

σ
d

σ
/

d
p T
[G

eV
−

1 c]

0 100 200 300 400 500
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

pt
T[GeV/c]

M
C

/D
at

a

Andy Buckley 19/47

Writing a first analysis

Andy Buckley 20/47

Writing an analysis

Writing an analysis is of course more involved
But the C++ interface is pretty friendly: most analyses are short,
simple, and readable

An example is usually the best instruction: take a look at
https://rivet.hepforge.org/analyses/EXAMPLE.html

Code is “mostly normal”:

I Typical init/exec/finalize loop structure
I Histograms ∼normal; titles, etc.→ external .plot file
I Particle, Jet and FourMomentum classes with some nice things

like abseta() and abspid(), constituents, decay-chain searching,
and compatibility with FastJet objects

I Projections for auto-cached computations

Andy Buckley 21/47

https://rivet.hepforge.org/analyses/EXAMPLE.html

Writing an analysis

Writing an analysis is of course more involved
But the C++ interface is pretty friendly: most analyses are short,
simple, and readable

An example is usually the best instruction: take a look at
https://rivet.hepforge.org/analyses/EXAMPLE.html

Code is “mostly normal”:

I Typical init/exec/finalize loop structure
I Histograms ∼normal; titles, etc.→ external .plot file
I Particle, Jet and FourMomentum classes with some nice things

like abseta() and abspid(), constituents, decay-chain searching,
and compatibility with FastJet objects

I Projections for auto-cached computations

Andy Buckley 22/47

https://rivet.hepforge.org/analyses/EXAMPLE.html

Projections
Projections are just observable calculators: given an Event object, they
project out physical observables.

Automatic caching of results leads to slightly odd calling code:

Declaration with a string name in the init method:
void init() {

...
const SomeProjection sp(foo, bar);
declare(sp, "MySP");
...

}

Application in the analyze method via the same name:
void analyze(const Event& evt) {

...
const SomeProjectionBase& mysp =
apply<SomeProjectionBase>(evt, "MySP");

mysp.foo()
...

}

Then query it about the things it has computed, via the object/ref API
Andy Buckley 23/47

Particle finders & final-state projections
Rivet is mildly obsessive about calculating from final state objects

So a very important set of projections is those used to extract final state
particles, which inherit from FinalState

I FinalState finds all final state particles matching kinematic/ID
criteria

I PromptFinalState is the same, but for final-state particles not from
hadron decays

I VisibleFinalState excludes invisible particles like neutrinos &
dark matter

I FS subclasses ChargedFinalState, NeutralFinalState, IdentifiedFinalState,
VetoedFinalState unimportant now: can do their job via Cuts

I DressedLeptons is a special composite-particle finder that “dresses”
charged leptons with prompt photons in a narrow cone

I UnstableParticles finds physical non-final-state particles
I See also TauFinder, WFinder, ZFinder, . . .

NB. Most FSPs can take another FSP as a constructor argument and augment it
Andy Buckley 24/47

Using an FSP to get final state particles

void init() {
...
const FinalState myfs(Cuts::pT > 500*MeV && Cuts::abseta < 2.5);
declare(myfs, "FS");
...

}

void analyze(const Event& evt) {
...
const FinalState& fs = apply<FinalState>(evt, "FS");
MSG_INFO("Total mult. = " << fs.size());
for (const Particle& p : fs.particles()) {
MSG_DEBUG("Particle eta = " << p.eta());

}
...

}

More complex projections like DressedLeptons, FastJets, WFinder,
TauFinder . . . implement expt-like strategies for dressing, tagging,
mass-windowing, etc.

Andy Buckley 25/47

Selection cuts

Projection specification and object retrieval functions almost all accept
Cut objects

Combinable Cut objects:

I FinalState(Cuts::pT > 0.5*GeV && Cuts::abseta < 2.5)

I fs.particles(Cuts::absrap < 3 || (Cuts::absrap > 3.2 &&

Cuts::absrap < 5), cmpMomByEta)

Can also use cuts on PID and charge:

I fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or
I FinalState(Cuts::charge != 0)

Most functions with Cut args also accept functors for filtering: includes
functions, C++ lambdas, and many pre-made ones in Rivet, for
example pTGtr(), hasBTag(), etc., or this advanced usage:
select(jets, [](const Jet& j){return j.particles(Cuts::abscharge > 0 &&

Cuts::pT > 5*GeV).size() > 3;})
Andy Buckley 26/47

Selection tools

Object filtering is very important, e.g. for isolation / overlap removal
checks.

I Filtering functions: select(const Particles/Jets&, FN),
discard(...) + iselect/idiscard* in-place versions

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. — accepting functions/functors

I sum(), transform(), minmax(), etc. — vector tools in
Rivet/Tools/Utils.hh

I + a cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Andy Buckley 27/47

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets")
.jetsByPt(Cuts::pT > 20*GeV && Cuts::abseta < 2.8);

const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG("Number of raw jets, electrons, muons = "

<< jets.size() << ", " << elecs.size() << ", " << mus.size());

Andy Buckley 28/47

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets")
.jetsByPt(Cuts::pT > 20*GeV && Cuts::abseta < 2.8);

const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG("Number of raw jets, electrons, muons = "

<< jets.size() << ", " << elecs.size() << ", " << mus.size());

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = discard(jets, [&](const Jet& j) {

if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4*GeV).size() < 3 &&

any(mus, deltaRLess(j, 0.4))) return true;
return false;

});

Andy Buckley 29/47

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets")
.jetsByPt(Cuts::pT > 20*GeV && Cuts::abseta < 2.8);

const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG("Number of raw jets, electrons, muons = "

<< jets.size() << ", " << elecs.size() << ", " << mus.size());

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = discard(jets, [&](const Jet& j) {

if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4*GeV).size() < 3 &&

any(mus, deltaRLess(j, 0.4))) return true;
return false;

});

// Discard electrons close to remaining jets
const Particles isoelecs = discard(elecs, [&](const Particle& e) {

return any(isojets, deltaRLess(e, 0.4));
});

. . .

Andy Buckley 30/47

Jets

One more important projection set is those which find jets
Define the input particles (via a FinalState), and the jet alg & params:
const FinalState fs(-3.2, 3.2);
declare(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6,

JetAlg::ALL_MUONS, JetAlg::ALL_INVISIBLES);
declare(fj, "Jets");

Get the jets and loop over them in decreasing pT order:
const Jets jets =

apply<JetAlg>(evt, "Jets").jetsByPt(20*GeV);
for (const Jet& j : jets) {

for (const Particle& p : j.particles()) {
const double dr = deltaR(j, p); //< auto-conversion!

}
}

Jets are automatically ghost-tagged using b and c hadrons:
I if (myjet.bTagged()) ...

I myjet.bTags(Cuts::abseta < 2.5 && Cuts::pT > 5*GeV)

Andy Buckley 31/47

Jet substructure

Looking inside jets is common practice.

Rivet doesn’t duplicate existing tools: best just to use FastJet directly
const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
for (const PseudoJet& pjet : psjets) {

PseudoJet fjet = filter(pjet);
...

}

Rivet’s Jet and Particle classes auto-convert to PseudoJet:
⇒ d23 = cs.exclusive subdmerge(jetproj.jetsByPt[0], 2)

Andy Buckley 32/47

Writing, building & running your own analysis

To get an analysis template, which you can fill in with an FS projection
and a particle loop, run e.g. rivet-mkanalysis MY TEST ANALYSIS — this
will make the required files.

Once you’ve filled in the .cc file, you can compile into a plugin library
with
rivet-build MY TEST ANALYSIS.cc

This is just a front-end to calling the C++ compiler: you can add custom compiler flags if
you want

To run, first export RIVET ANALYSIS PATH=$PWD, then run rivet as
before. Or add the --pwd option to the rivet command line.

Andy Buckley 33/47

EXERCISE: a dilepton + jets analysis

We are going to compare Drell-Yan events with Z→ ee and Z→ µµ

See the TUTORIAL.* analysis files in the Docker working dir, and on
lxplus in ˜abuckley/public/rivet-tutorial/. This is the starting point
for our exercise: the tasks are documented in a comment in the
analyze() function.

I The first step is to find high-pT leptons: try a FinalState looking
for > 20 GeV e/µ in a sensible acceptance.

This analysis uses an option flag, to specify if it’s being run in e or µ
mode, so choose your Cuts::abspid cut based on the value of
eemode (true == electron).

If there are two suitable leptons in the event, get the mass of the
pair like FourMomentum ll = leps[0].mom() + leps[1].mom(); ll.mass()

Andy Buckley 34/47

EXERCISE: a dilepton + jets analysis (2)

I To run your analysis, use rivet-build and run (with Pythia) like
run-pythia -n 10000 -e 13000 -s -c WeakSingleBoson:ffbar2gmZ=on -c

23:onMode=off -c "23:onIfAny=11" -o Zee.hepmc &

rivet --pwd -a TUTORIAL:LMODE=EL Zee.hepmc -H Zee.yoda

and similar for the µµ case. Make the plots and inspect:
rivet-mkhtml --remove-options Z*.yoda

I After 5-10k events, you should see a distinction between ee and µµ
in the m`` distribution: the electrons are losing more energy via
QED. Use the DressedLeptons projection to fix this, and fill the
mll dressed histo.

I Now jets: use the FastJets projection to construct R = 0.4 anti-kt
jets from final-state particles in a reasonable calorimeter
acceptance: no pT cut, but e.g. |η| < 4.5.

The jets by default include all muons and no invisibles. You might
want to make this more ATLAS-like by including hadron-decay
muons and neutrinos/invisibles (these are often included in jet
calibration): see the FastJets constructor in Doxygen

Andy Buckley 35/47

https://rivet.hepforge.org/code/dev/classRivet_1_1FastJets.html

EXERCISE: a dilepton + jets analysis (3)

I Plot the jet multiplicity, i.e. the size of the returned jets collection,
with e.g. pT > 20 GeV.

I Whichever way you calibrated your jet constituents, the prompt
electrons are still being reconstructed as jets: you need to remove
the overlap between them. Filter your jet collection to remove any
jets with ∆R < 0.4 of your hard leptons.

You can do this manually with two for-loops, but it’s awkward:
try a single loop in conjunction with idiscard() and deltaRLess(),
or the very useful higher-level idiscardIfAnyDeltaRLess()
function.

Fill the njets iso histogram with your isolated/overlap-removed
jets, and also the pt1jet and HT histograms if you like: the sum()

function can help with the latter
I Finally, use select() and hasBTag() to fill the b-jet multiplicities

Congratulations! If you need any hints, an example solution has been
hidden all along in the work/lxplus dir as .TUTORIAL SOLUTION.cc

Andy Buckley 36/47

BSM searches and detector effects

Andy Buckley 37/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth

Detector hits
Digitization

Trigger

Det

Reco

Reco/analysis

??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

Andy Buckley 38/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

Andy Buckley 39/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

Andy Buckley 40/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis
??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

Andy Buckley 41/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis
??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

Andy Buckley 42/47

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis
??

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate — and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation
Andy Buckley 43/47

Detector effects in Rivet

In addition to last slides, flexibility of det-sim is important:

I “Global” fast-sims hence difficult for coverage of multiple
experiments, multiple runs, multiple reco calibrations, etc.

I Analysis-specific efficiencies and smearings are more precise and
allow use of multiple jet sizes, tagger & ID working points,
isolations, . . .⇒many variations in real analyses

⇒ Rivet det-sim as effs+smearing, localised per-analysis
Rivet internally caches results, so global effect sim still efficient

I Functions for generic ATLAS & CMS performance in Runs 1 & 2
I Inline or analysis-specific functions easy to write & chain
I Eff/smearing functions can be used directly, e.g. for object filtering
I Working on embeddability for multithreaded fitters/samplers.

Andy Buckley 44/47

Using Rivet’s fast-sim tools

Smearing is provided as “wrapper projections” on normal particle, jet,
and MET finders. Maximal flexibility and minimal impact on unfolded
analysis tools. Smearing configuration via efficiency/modifier
functions.

To use, first #include "Rivet/Projections/Smearing.hh"

Examples:
IdentifiedFinalState es1(Cuts::abseta < 5, {{PID::ELECTRON, PID::POSITRON}});
SmearedParticles es2(es, ELECTRON_EFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2);
declare(recoes, "Electrons");

FastJets js1(FastJets::ANTIKT, 0.6, JetAlg::DECAY_MUONS);
SmearedJets js2(fj, JET_SMEAR_PERFECT, JET_EFF_BTAG_ATLAS_RUN2); // or lambda
declare(recoj, "Jets");

...

Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(10*GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(30*GeV);

Note set of standard global functions. Private fns also ok. Inline via C++11 lambda fns

Small tweak planned, to unify eff/mod fns and give user control of operator ordering
Andy Buckley 45/47

That’s all, folks

Andy Buckley 46/47

Summary

I Rivet is a user-friendly MC analysis system for prototyping
and preserving data analyses

I Allows theorists to use your analyses for model development &
testing, and BSM recasting: impact beyond “get a paper out”

I Also a very useful cross-check: quite a few analysis bugs have
been found via Rivet!

I Strongly encouraged/required by ATLAS & CMS physics groups.
Integrated with experiment software

I Now supports detector simulation for BSM search preservation
I Multi-weights, NLO counter-events, and heavy ion now also

supported
I Feedback, questions and getting involved in development —

all welcome!

Andy Buckley 47/47

Backup

Andy Buckley 48/47

Running a data analysis

For example, the ATLAS 7 TeV high-pT jet shapes analysis:
rivet --show-analysis ATLAS 2012 I1119557

Note: tab completion for rivet options and analysis names.

Now to run it:
run-pythia -n 20000 -e 7000 -c HardQCD:all=on -c

PhaseSpace:pTHatMin=280 -o fifo.hepmc &

rivet -a ATLAS 2012 I1119557 fifo.hepmc

See the Py8 manual: http://home.thep.lu.se/∼torbjorn/pythia82html/Welcome.html

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

By default unfinalised histos are written every 1000 events: can monitor
progress through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 49/47

http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Running a data analysis

For example, the ATLAS 7 TeV high-pT jet shapes analysis:
rivet --show-analysis ATLAS 2012 I1119557

Note: tab completion for rivet options and analysis names.

Now to run it:
run-pythia -n 20000 -e 7000 -c HardQCD:all=on -c

PhaseSpace:pTHatMin=280 -o fifo.hepmc &

rivet -a ATLAS 2012 I1119557 fifo.hepmc

See the Py8 manual: http://home.thep.lu.se/∼torbjorn/pythia82html/Welcome.html

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

By default unfinalised histos are written every 1000 events: can monitor
progress through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 50/47

http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Running a data analysis

For example, the ATLAS 7 TeV high-pT jet shapes analysis:
rivet --show-analysis ATLAS 2012 I1119557

Note: tab completion for rivet options and analysis names.

Now to run it:
run-pythia -n 20000 -e 7000 -c HardQCD:all=on -c

PhaseSpace:pTHatMin=280 -o fifo.hepmc &

rivet -a ATLAS 2012 I1119557 fifo.hepmc

See the Py8 manual: http://home.thep.lu.se/∼torbjorn/pythia82html/Welcome.html

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

By default unfinalised histos are written every 1000 events: can monitor
progress through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 51/47

http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Feeding LHEF events into Rivet

If your code outputs LHEF events rather than HepMC, you can’t use
Rivet directly. Anyway, you’re taking a risk that it won’t work since
Rivet is final-state focused. . . but you can also get hold of the raw event
if you want and just use the histogramming and event loop.

At Les Houches 2011 I made a mini filter program which will convert
LHEF files or streams to HepMC ones:
http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Use it like this:
./lhef2hepmc fifo.lhef fifo.hepmc

or
./lhef2hepmc fifo.lhef - | rivet

Maybe some help will be needed with building this program — it’s not
an official part of Rivet so you have to download and build it by hand.
Let us know if you need a hand.

Andy Buckley 52/47

http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

More about Rivet/YODA histogramming & merging

I YODA allows “simple” automatic run merging. With some
heuristics to distinguish homogeneous and heterogeneous run types.

I Not complete: merging (normalised) histograms and profiles is
one thing, but what about general objects, particularly ratios like
HA/HB (or more complex)

I YODA paves the way to a complete treatment:
User-accessible histograms will only be temporary copies for the
current event group (to allow weight vectors & counter-events)
Synchronised to a less transient copy every time the event number
changes in the event loop
Periodically, or on finalize(), this second copy gets used to make
final histograms: normalised, scaled, added, etc.
“Final” histograms can be written and updated through the run:
finalize() runs many times
And runs can be re-loaded and combined using the pre-finalize
copies ⇒ completely general run combination.

I Also tie-in with heavy ion / process-ratio analysis workflow

Andy Buckley 53/47

Projections — registration

Major idea: projections. They are just observable calculators: given an
Event object, they project out physical observables.

They also automatically cache themselves, to avoid recomputation.
This leads to slightly unfamiliar calling code.

They are declared with a name in the init method:
void init() {

...
const SomeProjection sp(foo, bar);
declare(sp, "MySP");
...

}

Andy Buckley 54/47

Projections — applying

Projections were declared with a name. . . they are then applied to the
current event, also by name:
void analyze(const Event& evt) {

...
const SomeProjectionBase& mysp =
apply<SomeProjectionBase>(evt, "MySP");

mysp.foo()
...

}

We prefer to get a handle to the applied projection as a const reference to avoid
unnecessary copying.

It can then be queried about the things it has computed. Projections
have different abilities and interfaces: check the Doxygen on the Rivet
website, e.g. http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Andy Buckley 55/47

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Physics vectors

Rivet uses its own physics vectors rather than CLHEP or ROOT. They
are a little nicer to use (we think!), but basically familiar. As usual,
check Doxygen: http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum() method which returns a
FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(), E(), px()
etc., mass(). Hopefully intuitive!

Andy Buckley 56/47

http://projects.hepforge.org/rivet/code/dev/

Histogramming

YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions∗: e.g.
bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in
the analyze method. There are scale(), normalize() and integrate()

methods for use in finalize().

The fill weight is important! For kinematic enhancements, systematics,
counter-events, etc. Use evt.weight() Until automatic multiweight support. . .

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

Andy Buckley 57/47

http://yoda.hepforge.org/doxy/hierarchy.html

Histogramming

YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions∗: e.g.
bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in
the analyze method. There are scale(), normalize() and integrate()

methods for use in finalize().

The fill weight is important! For kinematic enhancements, systematics,
counter-events, etc. Use evt.weight() Until automatic multiweight support. . .

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

Andy Buckley 58/47

http://yoda.hepforge.org/doxy/hierarchy.html

Histogramming

YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions∗: e.g.
bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in
the analyze method. There are scale(), normalize() and integrate()

methods for use in finalize().

The fill weight is important! For kinematic enhancements, systematics,
counter-events, etc. Use evt.weight() Until automatic multiweight support. . .

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

Andy Buckley 59/47

http://yoda.hepforge.org/doxy/hierarchy.html

Histogramming

YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions∗: e.g.
bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in
the analyze method. There are scale(), normalize() and integrate()

methods for use in finalize().

The fill weight is important! For kinematic enhancements, systematics,
counter-events, etc. Use evt.weight() Until automatic multiweight support. . .

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

Andy Buckley 60/47

http://yoda.hepforge.org/doxy/hierarchy.html

Histogram autobooking

The final framework feature to introduce is histogram autobooking.
This is a means for getting your Rivet histograms binned with the same
bin edges as used in the experimental data that you’ll be comparing to.

To use autobooking, just call the booking helper function with only the
histogram name (check that this matches the name in the reference
.yoda file), e.g.
hist1 = bookHisto1D("d01-x01-y01")

The “d”, “x” and “y” terms are the indices of the HepData dataset, x-axis, and y-axis for
this histogram in this paper.

A neater form of the helper function is available and should be used
for histogram names in this format:
hist1 = bookHisto1D(1, 1, 1)

That’s it! If you need to get the binnings without booking a persistent
histogram use refData(name) or refData(d,x,y).
NB. Extra bool argument for using ref data x vals for Scatter2Ds

Andy Buckley 61/47

BSM analysis coverage
Currently∼ 932 analyses!

I Until recently only 27 dedicated
BSM searches — and
BSM-sensitive SM measurements

I SM focus on unfolded
observables, not sufficient for
most BSM studies

I Rivet 2.5.0 introduced detector
smearing machinery. For BSM only!

2007 2009 2011 2013 2015 2017 2019
Year

0

200

400

600

800

an

al
ys

es

NB. glitch from Rivet 1.x→ 2.x migration.
Note recent steps!

I ⇒ have coded up 9 more BSM routines in last few months:
ATLAS: ICHEP 2016 3-lepton & same-sign 2-lepton, 1-lepton + jets,
1-lepton + many jets, jets + MET; 2015 jets + MET and monojet
CMS: ICHEP 2016 jets + MET; 8 TeV αT + b-jets
Partially validated — not many cutflows available!
Also added tools to help with object filtering, cutflows, etc.
Important as real-world examples of how to write BSM routines

I Rivet is in good shape for preserving new physics searches!Andy Buckley 62/47

Smearing vs. fast sim vs. MC truth

CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Central jet pT b-jet pT

0.0

0.5

1.0

1.5

2.0

2.5

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−2

Truth
Smear
Delphes

0 100 200 300 400 500
CentralJet pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0.0

0.5

1.0

1.5

2.0

2.5

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 100 200 300 400 500
b-jet pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

Andy Buckley 63/47

Smearing vs. fast sim vs. MC truth

CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Electron multiplicity Leading electron pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n e Truth
Smear
Delphes

0 1 2 3 4
ne

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0.0

0.5
1.0

1.5
2.0

2.5

3.0

3.5

4.0

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Electron1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

Andy Buckley 64/47

Smearing vs. fast sim vs. MC truth

CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Muon multiplicity Leading muon pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n µ Truth
Smear
Delphes

0 1 2 3 4
nµ

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0

1

2

3

4

5

6

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Muon1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

Andy Buckley 65/47

	First Rivet runs
	Writing a first analysis
	BSM searches and detector effects
	That's all, folks
	Appendix
	Backup

