
Analysis preservation & recasting
with the Rivet toolkit

Andy Buckley, University of Glasgow
CMS MC training, CERN, 20 June 2018

Introduction

I Experiment/theory interaction growing
⇒ more direct collaboration on methods and

modelling, from SM QCD & Top to Higgs
and BSM

I Rivet analysis toolkit is a common dialect
for exchanging analysis details and ideas

I Implementing a Rivet code to complement
the data analysis is increasingly expected of
experiment analyses. Everyone benefits.

I This talk: description/discussion +
demo/exercises
Philosophy and recent/relevant
developments, plus a few technicalities
Time limited so I’ll skip a lot, but the full set
of slides is a useful reference

Andy Buckley 2/36

Introduction

I Experiment/theory interaction growing
⇒ more direct collaboration on methods and

modelling, from SM QCD & Top to Higgs
and BSM

I Rivet analysis toolkit is a common dialect
for exchanging analysis details and ideas

I Implementing a Rivet code to complement
the data analysis is increasingly expected of
experiment analyses. Everyone benefits.

I This talk: description/discussion +
demo/exercises
Philosophy and recent/relevant
developments, plus a few technicalities
Time limited so I’ll skip a lot, but the full set
of slides is a useful reference

Andy Buckley 3/36

Introduction

I Experiment/theory interaction growing
⇒ more direct collaboration on methods and

modelling, from SM QCD & Top to Higgs
and BSM

I Rivet analysis toolkit is a common dialect
for exchanging analysis details and ideas

I Implementing a Rivet code to complement
the data analysis is increasingly expected of
experiment analyses. Everyone benefits.

I This talk: description/discussion +
demo/exercises
Philosophy and recent/relevant
developments, plus a few technicalities
Time limited so I’ll skip a lot, but the full set
of slides is a useful reference

Andy Buckley 4/36

Introduction

I Experiment/theory interaction growing
⇒ more direct collaboration on methods and

modelling, from SM QCD & Top to Higgs
and BSM

I Rivet analysis toolkit is a common dialect
for exchanging analysis details and ideas

I Implementing a Rivet code to complement
the data analysis is increasingly expected of
experiment analyses. Everyone benefits.

I This talk: description/discussion +
demo/exercises
Philosophy and recent/relevant
developments, plus a few technicalities
Time limited so I’ll skip a lot, but the full set
of slides is a useful reference

Andy Buckley 5/36

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 430 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 6/36

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 430 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 7/36

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 430 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 8/36

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 430 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 9/36

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 430 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 10/36

Generator independence

A Pythia8 t̄t event visualised from HepMC output:

PDF link

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

Andy Buckley 11/36

http://www.ppe.gla.ac.uk/~abuckley/top-0002.pdf

Analysis coverage / wishlist
Lots of analyses, but we’re still missing a lot! You can help. . .

NEW! Semi-automatic Rivet LHC analysis wishlist

2007 2009 2011 2013 2015 2017
Year

0

100

200

300

400

an

al
ys

es

Andy Buckley 12/36

https://rivet.hepforge.org/rivet-coverage
https://rivet.hepforge.org/rivet-coverage

Rivet setup

Docker
VM-like pre-prepared environments: avoid platform issues, integrates
well with host. Instructions at https://rivet.hepforge.org/trac/wiki/Docker

docker pull hepstore/rivet-tutorial

docker run -it -v $PWD:/out hepstore/rivet-tutorial

hepstore/rivet-professor-tutorial:CMS2018 should also work

Local install
Easy to install using our bootstrap script:
wget http://rivet.hepforge.org/hg/bootstrap/raw-file/2.6.0/rivet-bootstrap

bash rivet-bootstrap

Needs valid compiler (C++11), etc. environment

Run from LCG
ssh lxplus7.cern.ch
. /cvmfs/sft.cern.ch/lcg/releases/LCG_87/gcc/6.2.0/x86_64-centos7/setup.sh
. /cvmfs/sft.cern.ch/lcg/releases/LCG_87/MCGenerators/rivet/2.5.4/...

x86_64-centos7-gcc62-opt/rivetenv.sh

Andy Buckley 13/36

https://rivet.hepforge.org/trac/wiki/Docker

First Rivet runs

Andy Buckley 14/36

Command-line interface

rivet and other command line tools to query and
run routines

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses "ATLAS|CMS"

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

Same metadata and API docs online at http://rivet.hepforge.org

All Rivet commands start with rivet-, so tab-complete lists them all

Andy Buckley 15/36

http://rivet.hepforge.org

Running existing analyses

To avoid huge files, we get the events
from generator to Rivet by writing
HepMC (from Py8) to a filesystem pipe

$ mkfifo fifo.hepmc

$ run-pythia -n 200000 -e 8000 -c Top:all=on -o fifo.hepmc &

$ rivet fifo.hepmc -a MC_TTBAR,MC_JETS,MC_GENERIC

-a ATLAS_2015_I1404878,CMS_2016_I1473674

$ rivet-mkhtml Rivet.yoda:’Pythia8 $t\bar{t}$’

By default unfinalised histos are written every 1000 events: monitor
progress through the run. Killing with Ctrl-C is safe: finalizing is run

Andy Buckley 16/36

Plotting

“YODA” stats library — http://yoda.hepforge.org
Bin-width handling, bin gaps, object ownership,
thread-safety⇒ non-ROOT histogramming

I Separation of stats from presentation:
plotting via make-plots script

I Text-based data format with all second-order
stat moments: full stat merging up to all
means and variances

I YAML metadata and zipped read/write
from v1.7.0

I Being gradually extended to handle more
complex physics data types

CLI tools: yodals, yodadiff, yodamerge, yodascale,
yoda2root, etc.

b

b
b b b b b b b b b b

b b
b
b b

b
b
b

b
b

b
b

b

b

b

Datab

Py8

10−2

10−1

1

10 1

Charged jet prel
⊥ (anti-kt, R = 0.4, y 0.0-1.9, p⊥ 15.0-24.0)

1/
N

je
td

N
/

d
pre

l
⊥

[G
eV

−
1]

0 0.5 1 1.5 2

0.6

0.8

1

1.2

1.4

Charged particle prel
⊥ [GeV]

M
C

/D
at

a

Andy Buckley 17/36

http://yoda.hepforge.org

Writing a first analysis

Andy Buckley 18/36

Writing an analysis

Writing an analysis is of course more involved

But the C++ interface is pretty friendly: most analyses are short,
simple, and readable

An example is usually the best instruction: take a look at
https://rivet.hepforge.org/analyses/MC_GENERIC.html

Code is “mostly normal”:

I Typical init/exec/finalize loop structure
I Histograms ∼normal; titles, etc.→ external .plot file
I Particle, Jet and FourMomentum classes with some nice things

like abseta() and abspid(), constituents, decay-chain searching,
and compatibility with FastJet objects

I Use of projections for auto-cached computations

Andy Buckley 19/36

https://rivet.hepforge.org/analyses/MC_GENERIC.html

Writing an analysis

Writing an analysis is of course more involved

But the C++ interface is pretty friendly: most analyses are short,
simple, and readable

An example is usually the best instruction: take a look at
https://rivet.hepforge.org/analyses/MC_GENERIC.html

Code is “mostly normal”:

I Typical init/exec/finalize loop structure
I Histograms ∼normal; titles, etc.→ external .plot file
I Particle, Jet and FourMomentum classes with some nice things

like abseta() and abspid(), constituents, decay-chain searching,
and compatibility with FastJet objects

I Use of projections for auto-cached computations

Andy Buckley 20/36

https://rivet.hepforge.org/analyses/MC_GENERIC.html

Projections

Projections are just observable calculators: given an Event object, they
project out physical observables.

Automatic caching of results leads to slightly odd calling code:

Declaration with a string name in the init method:
void init() {

...
const SomeProj sp(foo, bar);
declare(sp, "MySP");
...

}

Application in the analyze method via the same name:
void analyze(const Event& evt) {

...
const SomeProjBase& mysp = apply<SomeProj>(evt, "MySP");
mysp.foo()
...

}

Then query it about the things it has computed, via the object/ref API
Andy Buckley 21/36

Particle finders & final-state projections

Rivet is mildly obsessive about calculating from final state objects

So a very important set of projections is those used to extract final state
particles, which inherit from FinalState

I The FinalState projection finds all final state particles in a given η
range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have the
predictable effect!

I IdentifiedFinalState can be used to find particular particle
species. Nowadays arguably done more nicely via a Cut

I VetoedFinalState finds particles other than specified. Ditto

I VisibleFinalState excludes invisible particles like neutrinos, LSP

NB. Most FSPs can take another FSP as a constructor argument and augment it

Andy Buckley 22/36

Using an FSP to get final state particles

void init() {
...
const ChargedFinalState cfs(Cuts::pT > 500*MeV && Cuts::abseta < 2.5);
declare(cfs, "ChFS");
...

}

void analyze(const Event& evt) {
...
const FinalState& cfs = apply<FinalState>(evt, "ChFS");
MSG_INFO("Total charged mult. = " << cfs.size());
for (const Particle& p : cfs.particles()) {
MSG_DEBUG("Particle eta = " << p.eta());

}
...

}

More complex projections like DressedLeptons, FastJets, WFinder,
TauFinder . . . implement expt-like strategies for dressing, tagging,
mass-windowing, etc.

Andy Buckley 23/36

Selection cuts

Passing ordered lists of doubles to configure “automatic” cut rules is
inflexible, illegible, and error-prone. So. . .

Combinable Cut objects:

I FinalState(Cuts::pT > 0.5*GeV && Cuts::abseta < 2.5)

I fs.particles(Cuts::absrap < 3 || (Cuts::absrap > 3.2 &&

Cuts::absrap < 5), cmpMomByEta)

Can also use cuts on PID and charge:

I fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or
I FinalState(Cuts::charge != 0)

Use of functions/functors for ParticleFinder filtering is also possible:
very general, especially with C++ lambdas

Andy Buckley 24/36

Jets

One more important projection set is those which find jets
There’s a JetAlg abstract interface, but almost always use FastJet, via FastJets

Define the input particles (via a FinalState), and the jet alg & params:
const FinalState fs(-3.2, 3.2);
declare(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6,

JetAlg::ALL_MUONS, JetAlg::ALL_INVISIBLES);
declare(fj, "Jets");

Get the jets and loop over them in decreasing pT order:
const Jets jets =

apply<JetAlg>(evt, "Jets").jetsByPt(20*GeV);
for (const Jet& j : jets) {

for (const Particle& p : j.particles()) {
const double dr = deltaR(j, p); //< auto-conversion!

}
}

Remember to #include "Rivet/Projections/FastJets.hh"

NB. Lots of handy functions in Rivet/Math/MathUtils.hh!

Andy Buckley 25/36

Jet flavour

FastJets automatically ghost-tags jets using b and c hadrons (and τ ’s):

I if (myjet.bTagged()) ...

I if (myjet.bTags().size() > 1) ...

And you can use Cuts to refine the truth tag:

I myjet.bTagged(Cuts::abseta < 2.5 && Cuts::pT > 5*GeV)

Andy Buckley 26/36

Jet substructure

Looking inside jets is common practice these days!

Rivet doesn’t duplicate existing tools: best just to use FastJet directly
const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
for (const PseudoJet& pjet : psjets) {

PseudoJet fjet = filter(pjet);
...

}

Note: if using FastJet3 tools, you’ll need to add lifastjettools to the
rivet-buildplugin command line. And a -L/path/to/ arg as well, until the next
release. Just compilation, no magic

Rivet’s Jet and Particle classes auto-convert to PseudoJet:
⇒ d23 = cs.exclusive_subdmerge(jetproj.jetsByPt[0], 2)

Andy Buckley 27/36

Writing, building & running your own analysis

Let’s start with a simple “particle analysis”, just plotting some simple
particle properties like η, pT, φ, etc. Then we’ll try jets or W/Z.

To get an analysis template, which you can fill in with an FS projection
and a particle loop, run e.g. rivet-mkanalysis MY_TEST_ANALYSIS – this
will make the required files.

Once you’ve filled it in, you can either compile directly with g++, using
the rivet-config script as a compile flag helper, or run
rivet-buildplugin MY_TEST_ANALYSIS.cc

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet as
before. . . or add the --pwd option to the rivet command line.

Andy Buckley 28/36

BSM searches and detector effects

Andy Buckley 29/36

Detector effects

Normal in SM, top, etc. measurements to unfold detector effects.
Usually “uneconomic” to do that for BSM searches

Explicit fast detector simulation vs. smearing/efficiencies:

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis
??

Triggers
Efficiencies

Smearing

I (Private) reco algorithms already reverse most detector effects
I Reco calibration to MC truth, so kinematics usually subleading
I Efficiency & mis-ID effs dominate – tabulated in all fast-sims
I ⇒ flexible parametrisation: effs change with analysis phase-space,

experiment reco-code version, collider run, . . .
and need to guarantee stability for preservation

Andy Buckley 30/36

Using Rivet’s fast-sim tools

Smearing is provided as “wrapper projections” on normal particle, jet,
and MET finders.

Smearing configuration via efficiency/modifier functions.

To use, first #include "Rivet/Projections/Smearing.hh"

Examples:
FinalState es1(Cuts::abseta < 5 && Cuts::abspid == PID::ELECTRON);
SmearedParticles es2(es, ELECTRON_EFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2);
declare(es2, "Electrons");

FastJets js1(FastJets::ANTIKT, 0.6, JetAlg::DECAY_MUONS);
SmearedJets js2(fj, JET_SMEAR_ATLAS_RUN2, JET_EFF_BTAG_ATLAS_RUN2);
declare(js2, "Jets");

...

Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(10*GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(30*GeV);

Standard global functions here, but private fns or inline lambdas better when possible

Andy Buckley 31/36

Selection tools for search analyses

Search analyses typically do a lot more “object filtering” than
measurements. Lots of tools to express complex logic neatly:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4),
ParticleEffFilter(FN), ...

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors

I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Andy Buckley 32/36

BSM hands-on

Look at the source code in TESTDET.cc: does it make sense?

I Build & run like:
$ rivet-buildplugin TESTDET.cc

$ run-pythia -n 200000 -e 13000 -o fifo.hepmc -c SUSY:all=on

-c SLHA:file=gg_g1500_chi100_g-ttchi.slha &

$ rivet --pwd -a TESTDET -H bsm.yoda fifo.hepmc -lAnalysis=DEBUG

I Split and compare the particle- and reco-level observables:
$ bash truerecosplit.sh bsm.yoda

$ rivet-mkhtml bsm-*.yoda -m ’/TESTDET’

I Try adding a constant 70% b-tag efficiency to the jets:
JET_BTAG_EFFS(0.7) or
(const Jet& j) return j.bTagged() ? 0.7 : 0.0; .

I Try the same with CMS_2017_I1594909.cc; browse the file with
yodals -v to see the the CMS signal-region counts for recasting

Andy Buckley 33/36

Contur: BSM limit-setting using Rivet SM analyses
Contur is a layer on top of Rivet to do statistical interpretation of
injected BSM signal to “Standard Model” phase spaces.

I Idea: make use of the full set of Rivet
analyses to constrain new physics models.

Modelling inclusivity also important: a
strength of Herwig 7

I Benefits: model-agnostic and very quick.
Can study many possible signatures at the
same time

I Current constraints (in progress):
SM MC is complex⇒ assume data = SM

Single-bin limits within manual analysis
groupings in lieu of full correlations.

Working to include SM predictions and
uncertainties

Simplified vector+DM model

Eff-coupling light scalars

Andy Buckley 34/36

That’s all, folks

Andy Buckley 35/36

Summary

I Rivet is a user-friendly MC analysis system for prototyping
and preserving data analyses

I Allows theorists to use analyses for model development & testing,
MC tuning, and BSM recasting

I Also a very useful cross-check: quite a few analysis bugs have
been found via Rivet

I Supports detector simulation for BSM search preservation
I Contributions and team membership all very welcome.

Twice-annual Rivet hackathons in nice places!
Funded 3+ month MCnet studentships available

I Rivet is a great way to get a feel for MC physics, prototype
analyses, and work on SM & BSM phenomenology studies
with theorists

Andy Buckley 36/36

http://www.montecarlonet.org/index.php?p=Residency/main&sub=ShortTermStudentships

	First Rivet runs
	Writing a first analysis
	BSM searches and detector effects
	That's all, folks

