Rivet tutorial

Andy Buckley et al

LPCC Summer Institute Rivet tutorial, 2011-08-09

1/29

Contents

@ Introduction

@ First Rivet runs

@ Writing a first analysis
© Writing a data analysis

2/29

Introduction

Session details
Today is not a solid day of Rivet tutorials! (Phew)

10.00-10.30: arrival, setup, technical troubleshooting. .. coffee?

10.30-12.30: introducing Rivet, querying Rivet analyses, running
pre-built analyses, writing a simple pure-MC analysis.

12.30-14.00: LUNCH

14.00-16.00: writing more complex analyses, analyses with
experimental reference data. Troubleshooting.

If you already know the morning contents, or are satisfied
without knowing the afternoon stuff, drop in and out as suits.

This is a hands-on tutorial, and we want it to be practically
useful: take this opportunity to start implementing something
that you want. For specific questions to your problems, ask
one of the helpers.

4/29

What is Rivet?

Rivet is a generator-agnostic validation system for MC
generators.

More simply, it’s a tool to produce physics plots from an MC
generator code which can produce HepMC events. All the
“major” generators can do this one way or another: C++ Pythia 8,
Sherpa, Herwig++ out of the box, Fortran PYTHIA 6,
HERWIG+]IMMY, etc. via AGILe.

This is useful for validating generators — only need to write the
analysis once and it can be used to validate and compare every
generator that should be able to simulate it.

Also useful as an input to MC tuning, model development, BSM
studies, ...

Some more on Rivet’s design
MC analysis system operating on HepMC events. Intentionally
ignorant of what generator produced the events it sees.

Emphasis on not messing with the MC implementation details:
actually reconstruct bosons, don’t trace back partons, etc. Life is
eventually simpler this way: really.

Lots of standard analyses built in, including key ones for pQCD
and MPI model testing. New analyses can be picked up at
runtime: nice API with lots of tools to make this as simple and
pleasant as we can. Computations automatically cached.
Histograms automatically synchronised. Satisfaction
automatically guaranteed. ..

Experimentalists: please write Rivet analyses of your analysis
and contribute them! An excellent way to make your data really
useful.

Latest version is 1.6.0. 6/29

Setup

Rivet docs: online at http:/projects.hepforge.org/rivet/ — PDF
manual, HTML list of existing analyses, and Doxygen.

Log in to 1xplus.cern.ch or use the Rivet VM. On Ixplus, if
you're not in a bash shell (echo $sHELL), then run bash to make
life more pleasant: the Rivet toolkit provides contextual
command line completion with bash.

> ()nlxplus:source ~abuckley/public/setupRivetProf.sh
Test commands:

» rivet —--help

> agile-runmc --help

7/29

http://projects.hepforge.org/rivet/

First Rivet runs

Viewing available analyses

Rivet knows all sorts of details about its analyses!

» List available analyses:
rivet —--list-analyses

» List available analyses with a little more detail:
rivet —-list-analyses -v

» List ATLAS analyses with a little more detail:

rivet —-list-analyses -v ATLAS_

» Show some pure-MC analyses’ full details:
rivet —--show-analysis MC_

The PDF and HTML documentation is also built from this info,
so is always synchronised.

The analysis metadata is provided via the analysis API and usually read from
an .info file which accompanies the analysis.

9/29

Running a simple analysis (standalone)

For simplicity, we get the events from generator to Rivet by
writing to a filesystem pipe. NB. This has to live in a non-AFS
directory!

()nlxplustmkfifo /tmp/$USER/hepmc. fifo

We're going to use AGILe to run PYTHIA 6 for demonstration —
use the same or run any other generator that you like with
HepMC output going to the FIFO:

agile-runmc Pythia6:425 —--beams=LHC:7000 -n 2000 -o
/tmp/$USER/hepmc. fifo &

Now attach Rivet to the other end of the pipe:
rivet —a MC_GENERIC /tmp/$USER/hepmc.fifo

Tada! You can use multiple analyses at once, change the output
file, etc.: see rivet —-help

Feeding LHEF events into Rivet

Lots of you are fixed-order specialists, and your codes output
LHEEF events rather than HepMC. Of course, IR-unsafe
quantities won’t make much sense, but no reason to ban you
from making plots!

At Les Houches this year I made a mini filter program which
will convert LHEF files or streams to HepMC ones:
http://svn.hepforge.org/rivet/contrib/lhef2hepmc/

Use it like this:

./1lhef2hepmc fifo.lhef fifo.hepmc
or

./lhef2hepmc fifo.lhef - | rivet

Maybe some help will be needed with building this program —
it’s not an official part of Rivet so you have to download and
build it by hand. Let us know if you need a hand.

http://svn.hepforge.org/rivet/contrib/lhef2hepmc/

Plotting

Sorry, experimentalists: no ROOT!
Well, you can convert the Rivet output with the aida2root
script. ..

For now we are using the LWH implementation of the AIDA
interfaces. The plots are written out as DataPointSet objects in
AIDA XML format. A histogramming upgrade is underway!

Plotting is pretty easy, though:
rivet-mkhtml Rivet.aida

or, if you want complete control:
compare-histos Rivet.aida
make-plots =*.dat

Then view with a web browser /file
browser/evince/gv/xpdf... A --help option is available for all
Rivet scripts.

12/29

Running a data analysis

We're going to use the ATLAS 900 GeV /7 TeV min bias analysis:
rivet —--show-analysis ATLAS_ 2010_S8918562

Note that tab completion should work on rivet options and
analysis names.

Now to run it:
agile-runmc command as before, but with --beams=LHC: 900
rivet —a ATLAS_2010_S8918562 /tmp/$USER/hepmc.fifo

And plot, much as before:

rivet-mkhtml -t "ATLAS min bias at 900 GeV" Rivet.aida
or

compare-histos Rivet.aida

make-plots —--pdfpng ATLAS*.dat

13/29

Writing a first analysis

Writing an analysis
Writing an analysis is of course more involved than just running
rivet! However, the C++ APl is intended to be friendly: most

analyses are quite short and simple because the bulk of the
computation is in the library.

An example is usually the best instruction: take a look at
/afs/cern.ch/sw/lcg/external/MCGenerators/rivet/

1.6.0/share/src/Analyses/MC_GENERIC.cc (Or the same via
http://svn.hepforge.org/rivet/trunk)

Things to note:

» Analyses are classes and inherit from Rivet: :Analysis

» Usual init/execute/finalize-type event loop structure
(certainly familiar from experimental frameworks)

» Weird projection things in init and analyze

» Mostly normal-looking everything else

http://svn.hepforge.org/rivet/trunk

Projections — registration

Major idea: projections. These are where the computational
meat of Rivet resides. They are just observable calculators: given
an Event object, they project out physical observables. They also
automatically cache themselves, to avoid recomputation: this
leads to the most unintuitive code structures in Rivet.

They are registered with a name in the init method:

void init () {

const SomeProjection sp(foo, bar);
addProjection(sp, "MySP");

16/29

Projections — applying

Projections were registered with a name. .. they are then applied
to the current event, also by name:

void analyze (const Eventé& evt) ({

const BaseSomeProjection& mysp =
applyProjection<SomeProjectionBase> (evt, "MySP");
mysp . foo ()

We prefer to get a handle to the applied projection as a const reference
to avoid unnecessary copying.

It can then be queried about the things it has computed.
Projections have different abilities and interfaces: check the
Doxygen on the Rivet website, e.g.
http://projects.hepforge.org/rivet/code/dev/hierarchy.html

17/29

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Final state projections
Rivet is mildly obsessive about only calculating things from final
state objects. Accordingly, a very important set of projections is
those used to extract final state particles: these all inherit from
FinalState.

» The Finalstate projection finds all final state particles in a
given n range, with a given pr cutoff.

» Subclasses ChargedFinalState and NeutralFinalState have
the predictable effect!

> IdentifiedFinalState can be used to find particular
particle species.

> VetoedFinalState finds particles other than specified.

> VisibleFinalState excludes invisible particles like
neutrinos, LSP, etc.

Most FSPs can take another FSP as a constructor argument and
augment it. Future extension plans involve momentum selector
objects, cf. FastJet 3. 18/29

Using FSPs to get final state particles

void analyze (const Eventé& evt) {

const FinalState& cfs =
applyProjection<FinalState> (event, "ChgdFs");

MSG_INFO("Total charged mult. = " << cfs.size());

foreach (const Particle& p, cfs.particles()) {
const double eta = p.momentum() .eta();
MSG_DEBUG ("Particle eta = " << eta);

}

Note the lovely foreach macro — from Boost. We are very into
the “make simple things simple” philosophy. Please use foreach
when appropriate in any code that you contribute to Rivet.

19/29

Physics vectors

Rivet uses its own physics vectors rather than CLHEP. They are
a little nicer to use, but basically familiar. As usual, check
Doxygen: http:/projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum () method which returns

ad FourMomentum.

Some FourMomentum methods: eta (), PpT(), phi(), rapidity(),
E(), px() etc., mass (). Hopefully intuitive!

20/29

http://projects.hepforge.org/rivet/code/dev/

Histogramming

AIDA has Histogram1D and Profile1D histograms similar to the
core TH1D and TProfile in ROOT.

Histos can be booked via helper methods on the analysis base
class, which register the histograms at an appropriate path for
their parent analysis, e.g. bookHistogramlD ("thisname", 50, 0,
100) . They can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual £i11 (value, weight) method for
use in the analyze method. There are scale) and normalize ()
methods for use in finalize.

The fill weight is important! Generators are often run with some
kinematic enhancement which has to be offset with a reduced
weight. Use evt.weight (). Future versions will implicitly use
weights vectors.

21/29

A first analysis

Let’s start with a simple “min bias” type of analysis, just plotting
some simple particle properties like 1, pr, ¢, etc. (... mean pr vs.
ng if you're feeling confident!)

To get an analysis template, which you can fill in with an FS
projection and a particle loop, run rivet-mkanalysis
MY_TEST_ANALYSIS — this will make the required files.

Once you've filled it in, you can either compile directly with g++,

using the rivet-config script as a compile flag helper, or — more
helpfully — run

rivet-buildplugin RivetMyTest.so MY_TEST ANALYSIS.cc

In this setup, where we’re using the 32 bit Rivet on a 64 bit
system, add -m32

To run, first export RIVET ANALYSIS_PATH=$PWD, then run rivet
as before.

N
]
2

Writing a data analysis

Starting a data analysis
We'll use the ATLAS 2010 W+jets analysis as an example. Feel
free to implement something else: we’ll try to troubleshoot.

The SPIRES key for this ATLAS analysis is 8919674 (try “key
8919674” in the SPIRES search box) and it was published in 2010,
so in the standard Rivet naming convention it is called
ATLAS_2010_S8919674.

There is reference data for this analysis in HepData: running
rivet --show-analysis ATLAS_2010_58919674 supplies this
URL: http:/hepdata.cedar.ac.uk/view/irn8919674

rivet-mkanalysis ATLAS_2010_S8919674 will download this ref
data. NB. the jet multiplicity plots are not output correctly: HepData needs
some improvements! Check the .info and .aida files: use aida2flat
ATLAS_2010_S8919674.aida | less

The histogram names in this data file can be used for histogram
autobooking. .

http://hepdata.cedar.ac.uk/view/irn8919674

Histogram autobooking
The final framework feature to introduce is histogram
autobooking. This is a means for getting your Rivet histograms
binned with the same bin edges as used in the experimental data
that you'll be comparing to.

To use autobooking, just call the booking helper function with
only the histogram name (check that this matches the name in
the reference .aida file), e.g.

_histl = bookHistogramlD ("d01-x01-y01")

A neater form of the helper function is available and should be
used for histogram names in this format:

_histl = bookHistogramlD(1l, 1, 1)

That’s it! If you need the bin edges without booking a persistent
histogram (e.g. for booking a temporary LWH histogram), use
binEdges (name) Or binEdges (d, x,y).

Jets (1)

There are many more projections, but one more important set

which we’d like to dwell on is those to construct jets. getalg is
the main projection interface for doing this, but almost all jets

are actually constructed with FastJet, via the explicit FastJets

projection.

The FastJets constructor defines the input particles (via a
FinalState), as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");

FastJets fj(fs, FastJets::ANTIKT, 0.6);
fj.uselInvisibles();

addProjection (£j, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

26/29

Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pr order:

const Jets jets =
applyProjection<JetAlg> (evt, "Jets").jetsByPt (20xGeV);
foreach (const Jet& j, jets) {
foreach (const Particle& p, j.particles()) {
const double dr =
deltaR(j.momentum(), p.momentum());

Check out the Rivet /Math/MathUtils.hh header for more handy
functions like deltaRr.

27/29

UnstableFinalState

The unstableFinalstate projection fetches
decayed-but-physical particles (mostly hadrons) from the event
record. The HepMC standard declares how these are to be
indicated, so the results are reliable and physically safe:

const UnstableFinalState ufs (2.5, 6.0);
addProjection (ufs, "UFS");

const FinalStateé& ufs =
applyProjection<FinalState> (evt, "UFS");
foreach (const Particle& p, j.particles()) {
const int pid = p.pdgId();
if (PID::hasBottom(pid)) num b += 1;

HepPDT-type functions are defined in the pIp namespace in the
Rivet/Tools/ParticleIdUtils.hh.

28/29

THE END

	Introduction
	First Rivet runs
	Writing a first analysis
	Writing a data analysis

