
Rivet for BSM search analyses
Preserving logic & detector performance

Andy Buckley, University of Glasgow
for the Rivet team

CMS MC and Physics Tool tutorials
30 October 2020

❖ Rivet v3 from June 2019 to current 3.1.2, July 2020

➢ automatic MC systematics multiweight handling
➢ heavy ion machinery, analysis parameters, …
➢ Docker images for rivet and rivet+$generator
➢ and: BSM search-logic tools and detector emulation

❖ Why BSM analysis preservation?

➢ 10 years of null searches: statistically in a time of diminishing
returns = time to “save our progress”, engage with pheno

➢ likely that impact won’t be purely through your experimental
paper, but data and code preserved for community re-use

❖ And why Rivet?

➢ need to consider more complex models = fast equivalent code
➢ expertise/support established via long SM measurement

experience

Rivet and BSM

2

❖ Follow the experimental procedure as closely as possible

➢ as for measurements, avoid digging in the event record to get a more faithful representation

❖ But you can avoid some details since truth MC and signal-only

➢ Definitely things like vertexing (unless recasting LLP searches)

➢ Pile-up corrections are usually skippable — but jet grooming may be required

➢ Lepton and photon isolation can often be replaced by a “promptness” requirement

➢ Various details in isolation/OR process may be replaceable
(by efficiency numbers/functions or other shortcuts like directness/promptness)

❖ Output format?

➢ for now we mostly report via YODA histograms or lists of counters
— we’re extending these to be more suitable

➢ really needs to match HepData content

Search-recasting: general approach

3

Nearly all search analyses are at reco level: detector-specific. Time-investment in unfolding not worthwhile:
dilutes sensitivity unless full correlations given, etc.
Re-interpretation is limited, unless an accurate detector model is given. How accurate?

Not as much as you might think: “explicit” fast sims don’t necessarily help, smearing approaches go a long
way. Especially if specific to the analysis phase-space

Search-recasting: detector emulation

4

❖ Detector smearing system:
➢ developed based on Gambit experience
➢ key features cf. Delphes, but more flexible &

more analysis-specific
➢ Paper: https://arxiv.org/abs/1910.01637

(including “tuned” jet-substructure smearing)

❖ Same speed as Delphes via HepMC
❖ Coded into analysis logic: unified treatment

❖ Included in Les Houches 2019 (soft-lepton)
 cutflow comparisons and global-fit tests:

Performance very good!

Search-recasting tools: detector emulation

5

https://arxiv.org/abs/1910.01637

❖ Container and isolation utilities

➢ large suite of tools for “functional” transformations, enumeration,
and slicing of physics-object lists

➢ physics-object filtering tools and isolation/OR helpers

❖ Cut-flow monitoring

➢ cut-flows are an essential aspect of validating reinterpretation-analysis faithfulness
➢ but a serious pain to have to maintain in parallel
➢ Rivet’s version integrates cut-flows with analysis flow-control statements

❖ Not finished yet…
➢ still open areas: integrated jet grooming, automatic jet substructure smearing,

plottable cut-flows, …
➢ use it, and we’ll prioritise requests!

Search-recasting: more tools

6

❖ Everything based on Rivet+Pythia8 Docker;
more general models via MG5 were too slow for live use (and I ran out of prep time!)
so we’ll just do some generic search logic rather than a “real” analysis today

❖ Get the Rivet tutorial Docker image:
docker pull hepstore/rivet-tutorial:3.1.2

❖ Enter the container, with a path to your laptop filesystem at /host:
docker run -it --rm -v $PWD:/host hepstore/rivet-tutorial:3.1.2
$ rivet -h

❖ Create a dummy analysis code to work on:
$ rivet-mkanalysis MYSEARCH

Hands-on exercise setup

7

❖ Writing loops (in loops in loops) is tedious. We’re here to help!

❖ First, filtering a C++ vector (e.g. to apply a new cut) is not easy: calling erase in a
loop invalidates iterators! Filter functions do it efficiently:

ifilter_select(myparticles, Cuts::pT > 100*GeV)

❖ C++ allows passing functions as arguments, so we can make more complex,
stateful filtering decisions via standard or custom functors (including lambdas):

ifilter_select(myjets, hasBTag(Cuts::pT > 5*GeV)); or
filter_discard(electrons, deltaRLess(myjet, 0.2));
filter_select(myjets, [](const Jet& j){ return j.particles(Cuts::pT > 5*GeV).size() > 3;});

❖ And even higher-level: cuts via comparisons to whole sets of objects:
idiscardIfAnyDeltaRLess(myjets, isoleptons, 0.4);

❖ More helper functions for manipulating physics-object lists:
ht = sum(jets, Kin::pT, 0.0); or if (all(leptons, pTGtr(50*GeV))) or …

Filtering and overlap-removal tools

8

https://rivet.hepforge.org/code/dev/modules.html

❖ In your MYSEARCH.cc file, get particle-level truth jets, electrons, and muons

➢ Choose |eta| < 4, p
T
 > 30 GeV for jets; |eta| < 2.5, p

T
 > 20 GeV for leptons

➢ What particles do you forbid from being jet constituents?
Do analysis papers always make this clear?!?

❖ The jet collection will also include at least the electrons (and their photon halo):

➢ Remove any jets within 0.2 of an electron, discard any electrons < 0.4 from a remaining jet
➢ Remove any muon < 0.4 from a jet with > 4 tracks

❖ Filter out the b-tagged jets within |eta| < 2.5

➢ Should there be a kinematic cut on the tagging b-hadron? Is this reported in papers?

❖ What could you shortcut using PromptFinalState and NonPromptFinalState?
How accurate is it?

Exercise 1: object selection

9

❖ Rivet provides the Cutflow type for a single weighted cut-flow, Cutflows for many.
#include "Rivet/Tools/Cutflow.hh"
Cutflow flow{"Sel", strings{"> 2 jets", "> 1 lep", "> 1 b-jet", "MET", “HT”}};
Cutflows _flows.addCutflow(flow);

❖ Cuts are defined by integer or string index. Fill many at a time if desired:
_flows.fillinit(); //< fill before any cuts
_flows.fill(1); _flows.fillnext(pT1 > 300*GeV);
_flows.fillnext({pT2 > 0.5*pT1, HT > 1*TeV, meff > 1.2*TeV});

❖ Flow fills return the final cut result, so can be embedded in control statements:
if (_flows["Sel"].filltail({nbjet == 3, aplanarity < 0.3})) _srcounter->fill();

❖ Print out a nice string repr at the end: MSG_INFO(_flows);

❖ Plotting and full (multi)weight integration… a nice project!

Cut-flow monitoring

10

❖ Create a set of 3 cut-flows, for 1, 2 and >2 lepton events

❖ Require as a common selection that your events have:
➢ At least 3 QCD jets
➢ At least 2 b-jets with pT > 60 GeV
➢ At least 1 isolated lepton
➢ HT > 800 GeV
➢ MET > 200 GeV

Fill these selection requirements into your cut flows

❖ Finally apply separate lepton-multiplicity cuts for each signal region, and fill an
event-yield Counter in each

❖ Generate gluino → t t χ events with Pythia and process with your analysis:
$ pythia8-main93 -f gg_g1500_chi100_g-ttchi.cmnd -n 1000
$ rivet --pwd -a MYSEARCH pythia.hepmc

Exercise 2: event selection

11

❖ Detector smearing & efficiencies are implemented via wrapper projections:
#include "Rivet/Projections/Smearing.hh"
SmearedParticles(electronfs, ELECTRON_EFF_CMS_RUN2);
SmearedJets(fastjets, JET_SMEAR_CMS_RUN2, JET_BTAG_EFFS(0.77, 1/6., 1/134.));
SmearedMET(met, MET_SMEAR_CMS_RUN2);

❖ These “standard” functions are taken from Delphes and reco performance
papers: see Rivet/Tools/SmearingFunctions.hh. They are generic and
incomplete! Much better is to implement the critical ones specific to your
analysis, as named functions or lambdas

❖ Smearing and efficiency functions can be chained, to get specific effects or to
apply multiple kinds of distortion. Generic smearing/eff-function helpers are
found in Rivet/Tools/{ParticleBase,Particle,Jet}SmearingFunctions.hh

❖ There’s always room to improve… let us know!

Using detector emulation

12

❖ Now we’re going to apply some smearing & efficiency functions to emulate the
reco-level nature of the analysis. The main effect here will be on lepton and b-tag
efficiencies (and probably some p

T
-cut migration)

❖ Use the “standard” CMS Run 2 jet smearing, and a b-tag efficiency tuple b=0.7, c=0.1,
l=1/120

❖ For electrons, use standard smearing and a custom efficiency = 0.85 (1-(eta/5)2) (1 -
0.1 exp(10 - pT/2 GeV)). For muons use standard smearing and fixed 80% eff

❖ For MET, use the standard smearing

❖ Note that you will need to change the apply<T>(...) template types to more generic
ones: FinalState → ParticleFinder, FastJets → JetFinder, MissingMomentum → METFinder

❖ What are the effects on yields & cut-flows?
Try adding -lProjection.SmearedParticles=DEBUG . Maybe useful: yodals -v Rivet.yoda

Exercise 3: smearing functions

13

❖ As a final exercise, let’s see what it’s like to implement an analysis “from
outside”, by looking in a couple of recent papers

❖ ATLAS RPV b-jets: https://inspirehep.net/literature/1821239
➢ Can you find reference cut-flows and similar information?
➢ Are the tight leptons and lepton overlap-removal needed?
➢ What signal regions are usable?
➢ How exactly can we make the relevant MC signal?

❖ CMS bottom-type VLQs: https://inspirehep.net/literature/1812970
➢ Where are the cut-flows, yield data, and MC model info?
➢ does Njet mean before or after overlap removal between the AKT4 and AKT8 jets?
➢ if 2 AKT4 jets overlap with one AKT8, are those specific AKT4s “forced” to be Z/H

candidates?
➢ what are the target mean and sigma values in the chi2

mod
?

➢ what are the event overlaps & syst correlations between Njet and decay-assumption bins?

Exercise 4: what needs to be published?

14

https://inspirehep.net/literature/1821239
https://inspirehep.net/literature/1812970

❖ Rivet is a well-established toolkit for measurement
preservation, and has a strong feature set for BSM direct
searches

❖ Emphasis on clarity without sacrificing accuracy: detailed
control of isolation/OR, analysis-specific smearing, etc.

❖ Preserving these searches in a fast, clear, and accurate
form is more important than ever, as stat gains dwindle
and simplified models are no longer sufficient

❖ So use it, submit feature requests (and merge requests,
thanks!), and we’ll support & develop accordingly!

❖ New contributors are very welcome! BSM development
could be a 3-4 month (remote) MCnet studentship...

Summary

15

