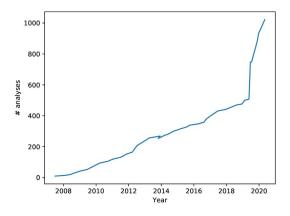
Rivet for BSM search analyses Preserving logic & detector performance

Andy Buckley, University of Glasgow for the Rivet team

CMS MC and Physics Tool tutorials 30 October 2020

Rivet and BSM

Rivet v3 from June 2019 to current 3.1.2, July 2020


- automatic MC systematics multiweight handling
- ➢ heavy ion machinery, analysis parameters, ...
- Docker images for rivet and rivet+\$generator
- > and: BSM search-logic tools and detector emulation

Why BSM analysis preservation?

- 10 years of null searches: statistically in a time of diminishing returns = time to "save our progress", engage with pheno
- likely that impact won't be purely through your experimental paper, but data and code preserved for community re-use

And why Rivet?

- need to consider more complex models = fast equivalent code
- expertise/support established via long SM measurement experience

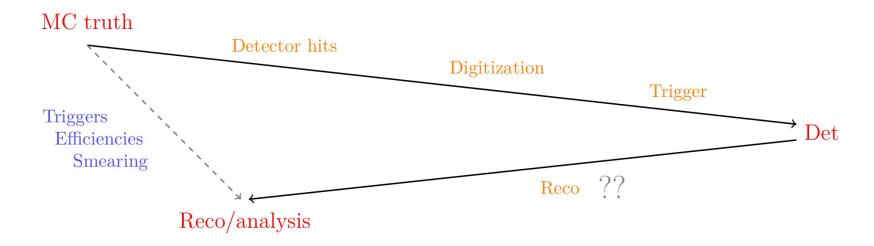
Rivet analysis coverage (searches only)

Rivet analyses exist for 54/1068 papers = 5%. 12 priority analyses required. Total number of Inspire papers scanned = 2633, at 2020-07-02 Breakdown by identified experiment (in development):

Key	ALICE	ATLAS	CMS	LHCb	Forward	HERA	$e^+e^-(\geq 12$ GeV)
Rivet wanted (total):	4	152	207	32	0	58	35
Rivet REALLY wanted:	0	2	10	0	0	0	0
Rivet provided:	0/4 = 0%	28 /180 = 16 %	9/216 = 4%	0/32 = 0%	0	0/58 = 0%	10/45 = 22%

Search-recasting: general approach

- Follow the experimental procedure as closely as possible
 - > as for measurements, avoid digging in the event record to get a more faithful representation
- But you can avoid some details since truth MC and signal-only
 - Definitely things like vertexing (unless recasting LLP searches)
 - > Pile-up corrections are usually skippable but jet grooming may be required
 - > Lepton and photon isolation can often be replaced by a "promptness" requirement
 - Various details in isolation/OR process may be replaceable
 (by efficiency numbers/functions or other shortcuts like directness/promptness)

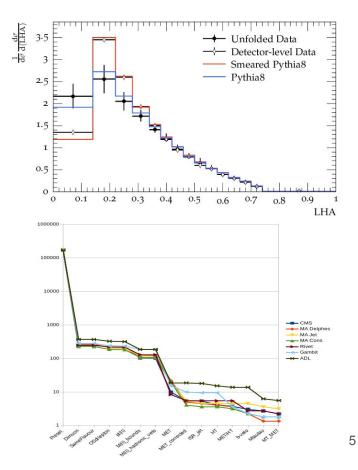

Output format?

- for now we mostly report via YODA histograms or lists of counters
 we're extending these to be more suitable
- really needs to match HepData content

Search-recasting: detector emulation

Nearly all search analyses are at reco level: detector-specific. Time-investment in unfolding not worthwhile: dilutes sensitivity unless full correlations given, etc.

Re-interpretation is limited, unless an accurate detector model is given. How accurate?



Not as much as you might think: "explicit" fast sims don't necessarily help, smearing approaches go a long way. Especially if specific to the analysis phase-space

Search-recasting tools: detector emulation

Detector smearing system:

- developed based on Gambit experience
- key features cf. Delphes, but more flexible & more analysis-specific
- Paper: <u>https://arxiv.org/abs/1910.01637</u> (including "tuned" jet-substructure smearing)
- Same speed as Delphes via HepMC
- Coded into analysis logic: unified treatment
- Included in Les Houches 2019 (soft-lepton) cutflow comparisons and global-fit tests: Performance very good!

Search-recasting: more tools

Container and isolation utilities

- large suite of tools for "functional" transformations, enumeration, and slicing of physics-object lists
- physics-object filtering tools and isolation/OR helpers

Cut-flow monitoring

- cut-flows are an essential aspect of validating reinterpretation-analysis faithfulness
- but a serious pain to have to maintain in parallel
- Rivet's version integrates cut-flows with analysis flow-control statements

Not finished yet...

- still open areas: integrated jet grooming, automatic jet substructure smearing, plottable cut-flows, ...
- use it, and we'll prioritise requests!

Hands-on exercise setup

Everything based on Rivet+Pythia8 Docker;

more general models via MG5 were too slow for live use (and I ran out of prep time!) so we'll just do some generic search logic rather than a "real" analysis today

- Get the Rivet tutorial Docker image: docker pull hepstore/rivet-tutorial:3.1.2
- Enter the container, with a path to your laptop filesystem at /host: docker run -it --rm -v \$PWD:/host hepstore/rivet-tutorial:3.1.2 \$ rivet -h
- Create a dummy analysis code to work on:
 \$ rivet-mkanalysis MYSEARCH

Filtering and overlap-removal tools

- Writing loops (in loops in loops) is tedious. We're here to help!
- First, filtering a C++ vector (e.g. to apply a new cut) is not easy: calling erase in a loop invalidates iterators! Filter functions do it efficiently: ifilter_select(myparticles, Cuts::pT > 100*GeV)
- C++ allows passing functions as arguments, so we can make more complex, stateful filtering decisions via standard or custom functors (including lambdas): ifilter_select(myjets, hasBTag(Cuts::pT > 5*GeV)); or filter_discard(electrons, deltaRLess(myjet, 0.2)); filter_select(myjets, [](const Jet& j){ return j.particles(Cuts::pT > 5*GeV).size() > 3;});
- And even higher-level: cuts via comparisons to whole sets of objects: idiscardIfAnyDeltaRLess(myjets, isoleptons, 0.4);
- More helper functions for manipulating physics-object lists: ht = sum(jets, Kin::pT, 0.0); or if (all(leptons, pTGtr(50*GeV))) or ...

Exercise 1: object selection

- In your MYSEARCH.cc file, get particle-level truth jets, electrons, and muons
 - > Choose |eta| < 4, $p_{\tau} > 30$ GeV for jets; |eta| < 2.5, $p_{\tau} > 20$ GeV for leptons
 - What particles do you forbid from being jet constituents? Do analysis papers always make this clear?!?
- The jet collection will also include at least the electrons (and their photon halo):
 - Remove any jets within 0.2 of an electron, discard any electrons < 0.4 from a remaining jet
 - Remove any muon < 0.4 from a jet with > 4 tracks
- Filter out the b-tagged jets within |eta| < 2.5
 - Should there be a kinematic cut on the tagging b-hadron? Is this reported in papers?
- What could you shortcut using PromptFinalState and NonPromptFinalState? How accurate is it?

Cut-flow monitoring

- Rivet provides the Cutflow type for a single weighted cut-flow, Cutflows for many. #include "Rivet/Tools/Cutflow.hh" Cutflow flow{"Sel", strings{"> 2 jets", "> 1 lep", "> 1 b-jet", "MET", "HT"}}; Cutflows _flows.addCutflow(flow);
- Cuts are defined by integer or string index. Fill many at a time if desired: _flows.fillinit(); //< fill before any cuts _flows.fill(1); _flows.fillnext(pT1 > 300*GeV); _flows.fillnext({pT2 > 0.5*pT1, HT > 1*TeV, meff > 1.2*TeV});
- Flow fills return the final cut result, so can be embedded in control statements: if (_flows["Sel"].filltail({nbjet == 3, aplanarity < 0.3})) _srcounter->fill();
- Print out a nice string repr at the end: MSG_INFO(_flows);
- Plotting and full (multi)weight integration... a nice project!

Exercise 2: event selection

- Create a set of 3 cut-flows, for 1, 2 and >2 lepton events
- Require as a common selection that your events have:
 - > At least 3 QCD jets
 - At least 2 b-jets with pT > 60 GeV
 - > At least 1 isolated lepton
 - ≻ HT > 800 GeV
 - ➢ MET > 200 GeV

Fill these selection requirements into your cut flows

- Finally apply separate lepton-multiplicity cuts for each signal region, and fill an event-yield Counter in each
- Generate gluino → t t X events with Pythia and process with your analysis:
 \$ pythia8-main93 -f gg_g1500_chi100_g-ttchi.cmnd -n 1000
 \$ rivet --pwd -a MYSEARCH pythia.hepmc

Using detector emulation

- Detector smearing & efficiencies are implemented via wrapper projections: #include "Rivet/Projections/Smearing.hh" SmearedParticles(electronfs, ELECTRON_EFF_CMS_RUN2); SmearedJets(fastjets, JET_SMEAR_CMS_RUN2, JET_BTAG_EFFS(0.77, 1/6., 1/134.)); SmearedMET(met, MET_SMEAR_CMS_RUN2);
- These "standard" functions are taken from Delphes and reco performance papers: see Rivet/Tools/SmearingFunctions.hh. They are generic and incomplete! Much better is to implement the critical ones specific to your analysis, as named functions or lambdas
- Smearing and efficiency functions can be chained, to get specific effects or to apply multiple kinds of distortion. Generic smearing/eff-function helpers are found in Rivet/Tools/{ParticleBase,Particle,Jet}SmearingFunctions.hh
- There's always room to improve... let us know!

Exercise 3: smearing functions

- Now we're going to apply some smearing & efficiency functions to emulate the reco-level nature of the analysis. The main effect here will be on lepton and b-tag efficiencies (and probably some p_r-cut migration)
- Use the "standard" CMS Run 2 jet smearing, and a b-tag efficiency tuple b=0.7, c=0.1, l=1/120
- For electrons, use standard smearing and a custom efficiency = 0.85 (1-(eta/5)²) (1 0.1 exp(10 pT/2 GeV)). For muons use standard smearing and fixed 80% eff
- For MET, use the standard smearing
- ✤ Note that you will need to change the apply<T>(...) template types to more generic ones: FinalState → ParticleFinder, FastJets → JetFinder, MissingMomentum → METFinder
- What are the effects on yields & cut-flows?
 Try adding -IProjection.SmearedParticles=DEBUG . Maybe useful: yodals -v Rivet.yoda

Exercise 4: what needs to be published?

- As a final exercise, let's see what it's like to implement an analysis "from outside", by looking in a couple of recent papers
- ATLAS RPV b-jets: <u>https://inspirehep.net/literature/1821239</u>
 - Can you find reference cut-flows and similar information?
 - Are the tight leptons and lepton overlap-removal needed?
 - What signal regions are usable?
 - How exactly can we make the relevant MC signal?
- CMS bottom-type VLQs: <u>https://inspirehep.net/literature/1812970</u>
 - Where are the cut-flows, yield data, and MC model info?
 - does Njet mean before or after overlap removal between the AKT4 and AKT8 jets?
 - if 2 AKT4 jets overlap with one AKT8, are those specific AKT4s "forced" to be Z/H candidates?
 - \succ what are the target mean and sigma values in the chi2_{mod}?
 - what are the event overlaps & syst correlations between Njet and decay-assumption bins?

Summary

- Rivet is a well-established toolkit for measurement preservation, and has a strong feature set for BSM direct searches
- Emphasis on clarity without sacrificing accuracy: detailed control of isolation/OR, analysis-specific smearing, etc.
- Preserving these searches in a fast, clear, and accurate form is more important than ever, as stat gains dwindle and simplified models are no longer sufficient
- So use it, submit feature requests (and merge requests, thanks!), and we'll support & develop accordingly!
- New contributors are very welcome! BSM development could be a 3-4 month (remote) MCnet studentship...

