
Analysis prototyping, preservation,
and recasting with Rivet

Holger Schulz
IPPP Durham

Delhi, 17 February 2017

Most slides taken from Andy Buckley

www.hepforge.org/downloads/rivet

1/40

www.hepforge.org/downloads/rivet

Introduction
I Recent big changes in LHC

experiment/theory interaction
⇒ more direct collaboration to improve

methods and modelling, starting from SM &
QCD, now also Top, Higgs, and BSM

I Rivet analysis library is part of this: a
lightweight way to exchanging analysis
details and ideas

I Implementing a Rivet analysis to
complement the data analysis is increasingly
expected of LHC analyses. Everyone
benefits!

I This talk: description/discussion +
demo/exercises
More about the philosophy and
recent/relevant developments than detailed
technicalities (we have a manual and a
mailing list for that)

2/40

Introduction
Rivet is an analysis system for MC events, and lots of analyses
427 built-in, at today’s count! 54 are pure MC, and some double/triple-counting

I Generator-agnostic for physics & pragmatics
I A quick, easy and powerful way to get

physics plots from lots of MC gens
Only requirement: use HepMC event record
Usually via ASCII, but in-memory exchange is faster

I Rivet has become the LHC standard for
archiving LHC data analyses

Focus on unfolded measurements, esp. QCD
and EW+QCD, rather than searches
But there are BSM studies using it! And
detector simulation now possible
Key input to MC validation and tuning –
increasingly comprehensive coverage
Also “recasting” of SM and BSM data results
on to new/more general BSM model spaces
Add your analyses, too!

3/40

Design philosophy / pragmatics
Rivet operates on HepMC events, intentionally unaware of who made
them. . . so don’t “look inside” the event graph.
⇒ reconstruct resonances, dress leptons, avoid partons, etc.

cf. q/g jet discrimination: LO picture is an implementation-dependent cartoon;
a useful motivator but incomplete and ill-defined until after hadronization

This “hard work” way is actually simpler – fewer gotchas.
Makes you think about physics & helps find analysis bugs/ambiguities

Tech stuff:

I C++ library with Python interface & scripts
I “Plugins” ⇒ write your analyses without needing to rebuild Rivet

Trivial from user / analysis author point of view

I Tools to make “doing things properly” easy and default
I Computation caching for efficiency
I Histogram syncing: keep code clean and clear

+ helpful developers! New contributors always welcome

4/40

Why wouldn’t we want to look at the event graph?!
A Pythia8 t̄t event!

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

5/40

Why wouldn’t we want to look at the event graph?!
A Pythia8 t̄t event!

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

5/40

Running Rivet

Easy to install using our bootstrap script:

wget http://rivet.hepforge.org/hg/bootstrap/raw-file/2.5.3/rivet-bootstrap

bash rivet-bootstrap

Latest version is 2.5.3 Requires C++11 Can be picked up from Genser/LCG
build area:

ssh lxplus7.cern.ch

. /cvmfs/sft.cern.ch/lcg/releases/LCG_87/gcc/6.2.0/x86_64-centos7/setup.sh

. /cvmfs/sft.cern.ch/lcg/releases/LCG_87/MCGenerators/rivet/2.5.3/...

x86_64-centos7-gcc62-opt/rivetenv.sh

Docker image available:

docker pull hepstore/rivet:2.5.3

http://rivet.hepforge.org/trac/wiki/Docker

6/40

http://rivet.hepforge.org/trac/wiki/Docker

Running Rivet

I rivet command line tool to query
available analyses

I Can be used as a library (e.g. in big
experiment software frameworks)

I Can also be used from the command
line to read HepMC ASCII
files/pipes: very convenient

I Helper scripts like rivet-mkanalysis,
rivet-buildplugin

I Histogram comparisons, plot web
albums, etc. very easy

Docs online at http://rivet.hepforge.org – PDF manual, HTML list of
existing analyses, and Doxygen. Entries in HEPdata point to existing
rivet analyses.

6/40

http://rivet.hepforge.org

First Rivet runs

7/40

Viewing available analyses

Rivet knows all sorts of details about its analyses:

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses ATLAS_

I List CMS analyses:
rivet --list-analyses CMS_

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

The PDF and HTML documentation is also built from this info, so is
always synchronised.

The analysis metadata is provided via the analysis API and usually read from an .info

file which accompanies the analysis.

8/40

Running a simple analysis (standalone)

To avoid running a generator, we feed (gzipped) hepmc files to Rivet
directly today. Download from https://www.hepforge.org/downloads/rivet

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS

Hopefully that worked. You can use multiple analyses at once, change
the output file, etc.: see rivet --help

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS -a MC_GENERIC

SHERPA, Herwig7, ATLAS and CMS software can run Rivet through
memory transfer, no file I/O, faster.

FYI this is how you run e.g. Pythia8 events through Rivet:
Sacrifice frontend to Pythia8
Filesystem pipe: mkfifo fifo.hepmc

NB. A FIFO/pipe has to live in a non-AFS directory.
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

rivet -a MC_GENERIC -a MC_JETS hepmc.fifo

9/40

https://www.hepforge.org/downloads/rivet
http://agile.hepforge.org/svn/contrib/Sacrifice/

Running a simple analysis (standalone)

To avoid running a generator, we feed (gzipped) hepmc files to Rivet
directly today. Download from https://www.hepforge.org/downloads/rivet

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS

Hopefully that worked. You can use multiple analyses at once, change
the output file, etc.: see rivet --help

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS -a MC_GENERIC

SHERPA, Herwig7, ATLAS and CMS software can run Rivet through
memory transfer, no file I/O, faster.

FYI this is how you run e.g. Pythia8 events through Rivet:
Sacrifice frontend to Pythia8
Filesystem pipe: mkfifo fifo.hepmc

NB. A FIFO/pipe has to live in a non-AFS directory.
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

rivet -a MC_GENERIC -a MC_JETS hepmc.fifo

9/40

https://www.hepforge.org/downloads/rivet
http://agile.hepforge.org/svn/contrib/Sacrifice/

Running a simple analysis (standalone)

To avoid running a generator, we feed (gzipped) hepmc files to Rivet
directly today. Download from https://www.hepforge.org/downloads/rivet

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS

Hopefully that worked. You can use multiple analyses at once, change
the output file, etc.: see rivet --help

gunzip -c qcd.hepmc.gz | rivet -a MC_JETS -a MC_GENERIC

SHERPA, Herwig7, ATLAS and CMS software can run Rivet through
memory transfer, no file I/O, faster.

FYI this is how you run e.g. Pythia8 events through Rivet:
Sacrifice frontend to Pythia8
Filesystem pipe: mkfifo fifo.hepmc

NB. A FIFO/pipe has to live in a non-AFS directory.
run-pythia -n 2000 -c Top:all=on -o fifo.hepmc &

rivet -a MC_GENERIC -a MC_JETS hepmc.fifo

9/40

https://www.hepforge.org/downloads/rivet
http://agile.hepforge.org/svn/contrib/Sacrifice/

Feeding LHEF events into Rivet

If your code outputs LHEF events rather than HepMC, you can’t use
Rivet directly. Anyway, you’re taking a risk that it won’t work since
Rivet is final-state focused. . . but you can also get hold of the raw event
if you want and just use the histogramming and event loop.

At Les Houches 2011 Andy made a mini filter program which will
convert LHEF files or streams to HepMC ones:
http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Use it like this:
./lhef2hepmc fifo.lhef fifo.hepmc

or
./lhef2hepmc fifo.lhef - | rivet

Maybe some help will be needed with building this program – it’s not
an official part of Rivet so you have to download and build it by hand.
Let us know if you need a hand.

10/40

http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Plotting histograms
ROOT didn’t meet our needs/aspirations :-(
bin width issues, bin gaps unhandled, object ownership nightmare, thread-unsafety
Rivet 2 uses our (nice!) system called YODA – http://yoda.hepforge.org

YODA data format is plain text and stores all second-order statistical
moments: can do full stat merging, including details like weighted
focus inside bins. General annotation system for metadata – styling,
notes, whatever.

Command line tools: yodals, yodadiff, yodamerge, yodascale,
yoda2root, etc.

Plotting a .yoda file is easy:
rivet-mkhtml Rivet.yoda

Advanced: rivet-mkhtml Rivet.yoda:’Pythia\,8 $t\bar{t}$’

or, if you want complete control:
rivet-cmphistos Rivet.yoda:’My title’:LineColor=red && make-plots *.dat

Then view with a web browser/file browser/evince/gv/xpdf. . .
A --help option is available for all Rivet scripts.

11/40

http://yoda.hepforge.org

Running a data analysis

For example, the ATLAS 13 TeV Minimum Bias analysis:
rivet --show-analysis ATLAS_2016_I1419652

Or, the CMS 13 TeV charged hadron analysis:
rivet --show-analysis CMS_2015_I1384119

Note: tab completion for rivet options and analysis names — not in
docker run though.

gunzip -c qcd.hepmc.gz | rivet -a CMS_2015_I1384119 -a

ATLAS_2016_I1419652

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

By default unfinalised histos are written ever 1000 events: can monitor
progress through the run. Killing with Ctrl-C is safe: finalizing its run

12/40

Example output

rivet-mkhtml Rivet.yoda:Pythia8

BEGIN YODA_HISTO1D /CMS_2015_I1384119/d01-x01-y01
IsRef=1
Path=/CMS_2015_I1384119/d01-x01-y01
ScaledBy=1.00000000000000005e-04
Title=
Type=Histo1D
XLabel=
YLabel=
Mean: 2.047907e-03
Area: 2.128100e+01
ID ID sumw sumw2 sumwx sumwx2 numEntries
Total Total 2.128100e+01 2.128100e-03 4.358152e-02 2.926641e+01 212810
Underflow Underflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
Overflow Overflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
xlow xhigh sumw sumw2 sumwx sumwx2 numEntries
-2.000000e+00 -1.800000e+00 1.105200e+00 1.105200e-04 -2.100061e+00 3.994160e+00 11052
-1.800000e+00 -1.600000e+00 1.111800e+00 1.111800e-04 -1.889834e+00 3.216089e+00 11118
-1.600000e+00 -1.400000e+00 1.090400e+00 1.090400e-04 -1.636227e+00 2.458917e+00 10904
-1.400000e+00 -1.200000e+00 1.100500e+00 1.100500e-04 -1.430107e+00 1.862041e+00 11005
-1.200000e+00 -1.000000e+00 1.074200e+00 1.074200e-04 -1.181831e+00 1.303798e+00 10742
-1.000000e+00 -8.000000e-01 1.063700e+00 1.063700e-04 -9.578032e-01 8.659895e-01 10637
-8.000000e-01 -6.000000e-01 1.048100e+00 1.048100e-04 -7.341084e-01 5.176510e-01 10481
-6.000000e-01 -4.000000e-01 1.037100e+00 1.037100e-04 -5.192426e-01 2.634387e-01 10371
-4.000000e-01 -2.000000e-01 1.015100e+00 1.015100e-04 -3.042990e-01 9.460527e-02 10151
-2.000000e-01 0.000000e+00 9.916000e-01 9.916000e-05 -9.947841e-02 1.330623e-02 9916

.

.

.
END YODA_HISTO1D

13/40

Example output

rivet-mkhtml Rivet.yoda:Pythia8

b b b b b b b b b b b b b b b b b b b b

Datab

Pythia8

0

1

2

3

4

5

6

7

8

9
Selection: inelastic pp, charged hadrons (p, K ,π) cτ > 10 mm

1 N
dN

ch
dη

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

η

M
C

/D
at

a

14/40

Running Rivet in CMS

Rivet is interfaced to the CMS software framework:
https://twiki.cern.ch/twiki/bin/view/CMS/Rivet
https://twiki.cern.ch/twiki/bin/viewauth/CMS/TOPRivet
https://twiki.cern.ch/twiki/bin/view/CMS/RivetontoAODSIM — seems preferred
way, i.e. running on MINIAODSIM

Xavier Janssen is our CMS contact in CMS, he gave an overview talk in
the SMP meeting on October 11 2016.

15/40

https://twiki.cern.ch/twiki/bin/view/CMS/Rivet
https://twiki.cern.ch/twiki/bin/viewauth/CMS/TOPRivet
https://twiki.cern.ch/twiki/bin/view/CMS/RivetontoAODSIM

Writing a first analysis

16/40

Writing an analysis
Writing an analysis is of course more involved. But the C++ interface is
pretty friendly: most analyses are short, simple, and readable – details
handled in the library + expressive API functions.

An example is usually the best instruction: take a look at
http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc

Mostly “normal”:
I Typical init/exec/fin structure
I Histogram booking normal here, but no titles, labels, etc.: use

.plot file
I Rivet’s own Particle, Jet and FourMomentum classes: some nice

things like abseta() and abspid(), decay chain searching, and
auto-conversion to/from fastjet::PseudoJet

I Use of projections for computations, with a bit of magic – this is
where the caching happens

I Projections are declared with a string name, and later are applied
using the same name

I Final state projections are central: compute from final state or
physical decayed particles 17/40

http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc

Projections – registration

Major idea: projections. They are just observable calculators: given an
Event object, they project out physical observables.

They also automatically cache themselves, to avoid recomputation.
This leads to slightly unfamiliar calling code.

They are declared with a name in the init method:

void init() {
...
const SomeProjection sp(foo, bar);
declare(sp, "MySP");
...

}

18/40

Projections – applying

Projections were declared with a name. . . they are then applied to the
current event, also by name:

void analyze(const Event& evt) {
...
const SomeProjectionBase& mysp =
apply<SomeProjectionBase>(evt, "MySP");

mysp.foo()
...

}

We prefer to get a handle to the applied projection as a const reference to avoid
unnecessary copying.

It can then be queried about the things it has computed. Projections
have different abilities and interfaces: check the Doxygen on the Rivet
website, e.g. http://projects.hepforge.org/rivet/code/dev/hierarchy.html

19/40

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Particle finders & final-state projections
Rivet is mildly obsessive about only calculating things from final state
objects. Accordingly, a very important set of projections is those used to
extract final state particles: these all inherit from FinalState.

I The FinalState projection finds all final state particles in a given η
range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have the
predictable effect!

I IdentifiedFinalState can be used to find particular particle
species.

I VetoedFinalState finds particles other than specified.
I VisibleFinalState excludes invisible particles like neutrinos, LSP,

etc.

Most FSPs can take another FSP as a constructor argument and
augment it. In the near future FSPs should be able to take arbitrary combinations of
kinematic cuts as a single argument.

20/40

Using an FSP to get all final state particles

void analyze(const Event& evt) {
...
const FinalState& cfs =
apply<FinalState>(evt, "ChFS");

MSG_INFO("Total charged mult. = " << cfs.size());
for (const Particle& p : cfs.particles()) {
MSG_DEBUG("Particle eta = " << p.eta());

}
...

}

More complex projections like DressedLeptons, FastJets, WFinder,
TauFinder . . . implement expt-like strategies for dressing, tagging,
mass-windowing, etc.

21/40

Selection cuts

Combinable Cut objects:

I FinalState(Cuts::pT > 0.5*GeV && Cuts::abseta < 2.5)

I fs.particles(Cuts::absrap < 3 || (Cuts::absrap > 3.2 &&

Cuts::absrap < 5), cmpMomByEta)

Can also use cuts on PID and charge:

I fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or
I FinalState(Cuts::charge != 0)

Use of functions/functors for ParticleFinder filtering is coming. . .

22/40

Jet tagging

Previously used a very inclusive tagging definition based on hadron
parentage:

I j.hasBottom()

Still an option, but now also automatically ghost-tag jets using b and c
hadrons:

I if (!myjet.bTags().empty()) ...

And you can use Cuts to define the truth tag:

I myjet.bTags(Cuts::abseta < 2.5 && Cuts::pT > 5*GeV)

23/40

Histogramming
YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions∗: e.g.
bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in
the analyze method. There are scale(), normalize() and integrate()

methods for use in finalize().

The fill weight is important! For kinematic enhancements, systematics,
counter-events, etc. Use evt.weight() Until automatic multiweight support. . .

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

24/40

http://yoda.hepforge.org/doxy/hierarchy.html

Jets (1)

There are many more projections, but one more important set which
we’d like to dwell on is those to construct jets. JetAlg is the main
projection interface for doing this, but almost all jets are actually
constructed with FastJet, via the explicit FastJets projection.

The FastJets constructor defines the input particles (via a FinalState),
as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
declare(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6,

JetAlg::ALL_MUONS, JetAlg::ALL_INVISIBLES);
declare(fj, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

25/40

Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pT order:

const Jets jets =
apply<JetAlg>(evt, "Jets").jetsByPt(20*GeV);

for (const Jet& j : jets) {
for (const Particle& p : j.particles()) {
const double dr = deltaR(j, p); //< auto-conversion!

}
}

Check out the Rivet/Math/MathUtils.hh header for more handy
functions like deltaR.

26/40

Jets (3)

For substructure analysis Rivet doesn’t provide extra tools: best just to
use FastJet directly

const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
for (const PseudoJet& pjet : psjets) {

PseudoJet fjet = filter(pjet);
...

}

27/40

Writing, building & running your own analysis

Let’s start with a simple “particle analysis”, just plotting some simple
particle properties like η, pT, φ, etc. Then try jets, leptons.

To get an analysis template, which you can fill in with an FS projection
and a particle loop, run e.g. rivet-mkanalysis MY_TEST_ANALYSIS – this
will make the required files.

Once you’ve filled it in, you can either compile directly with g++, using
the rivet-config script as a compile flag helper, or run
rivet-buildplugin MY_TEST_ANALYSIS.cc

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet as
before. . . or add the --pwd option to the rivet command line.

28/40

Writing a data analysis

29/40

Histogram autobooking
The final framework feature to introduce is histogram autobooking.
This is a means for getting your Rivet histograms binned with the same
bin edges as used in the experimental data that you’ll be comparing to.

To use autobooking, just call the booking helper function with only the
histogram name (check that this matches the name in the reference
.yoda file), e.g.
_hist1 = bookHisto1D("d01-x01-y01")

The “d”, “x” and “y” terms are the indices of the HepData dataset, x-axis, and y-axis for
this histogram in this paper.

A neater form of the helper function is available and should be used
for histogram names in this format:
_hist1 = bookHisto1D(1, 1, 1)

That’s it! If you need to get the binnings without booking a persistent
histogram use refData(name) or refData(d,x,y).
NB. Extra bool argument for using ref data x vals for Scatter2Ds

30/40

Rivet + fast-sim for BSM searches

31/40

BSM analysis coverage
Currently∼ 427 analyses total &∼ 230 LHC alone

I Until recently only 27 dedicated
BSM searches – and
BSM-sensitive SM measurements

I SM focus on unfolded
observables, not sufficient for
most BSM studies

I Rivet 2.5.0 introduced detector
smearing machinery. For BSM only!

2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

0

50

100

150

200

250

300

350

400

an

al
ys

es

NB. glitch is Rivet 1.x→ 2.x migration.
Note recent acceleration!

I ⇒ 9 more BSM routines in last few months:
ATLAS: ICHEP 2016 3-lepton & same-sign 2-lepton, 1-lepton + jets,
1-lepton + many jets, jets + MET; 2015 jets + MET and monojet
CMS: ICHEP 2016 jets + MET; 8 TeV αT + b-jets
Partially validated – not many cutflows available!
Also added tools to help with object filtering, cutflows, etc.
Important as real-world examples of how to write BSM routines

I Rivet is in good shape for preserving new physics searches!
32/40

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth

Detector hits
Digitization

Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

33/40

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

33/40

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

33/40

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

33/40

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation
33/40

Smearing vs. fast sim vs. MC truth
CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Electron multiplicity Leading electron pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n e Truth
Smear
Delphes

0 1 2 3 4
ne

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0.0

0.5
1.0

1.5
2.0

2.5

3.0

3.5

4.0

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Electron1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

34/40

Smearing vs. fast sim vs. MC truth
CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Muon multiplicity Leading muon pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n µ Truth
Smear
Delphes

0 1 2 3 4
nµ

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0

1

2

3

4

5

6

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Muon1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

34/40

BSM & detector effects (II) ⇒ Rivet 2.5

In addition to last slides, flexibility of det-sim is important:

I “Global” fast-sims hence difficult for coverage of multiple
experiments, multiple runs, multiple reco calibrations, etc.

I Analysis-specific efficiencies and smearings are more precise and
allow use of multiple jet sizes, tagger & ID working points,
isolations, . . .⇒many variations in real analyses

⇒ Rivet det-sim as effs+smearing, localised per-analysis
Rivet internally caches results, so global effect sim still efficient

I Functions for generic ATLAS & CMS performance in Runs 1 & 2
I Inline or analysis-specific functions easy to write & chain
I Eff/smearing functions can be used directly, e.g. for object filtering
I Working on embeddability for multithreaded fitters/samplers.

35/40

Using Rivet 2.5 fast-sim
Smearing is provided as “wrapper projections” on normal particle, jet,
and MET finders. Maximal flexibility and minimal impact on unfolded
analysis tools. Smearing configuration via efficiency/modifier
functions.

To use, first #include "Rivet/Projections/Smearing.hh"

Examples:

IdentifiedFinalState es1(Cuts::abseta < 5, {{PID::ELECTRON, PID::POSITRON}});
SmearedParticles es2(es1, ELECTRON_EFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2);
declare(recoes, "Electrons");

FastJets js1(FastJets::ANTIKT, 0.6, JetAlg::DECAY_MUONS);
SmearedJets js2(js1, JET_SMEAR_PERFECT, JET_EFF_BTAG_ATLAS_RUN2); // or lambda
declare(recoj, "Jets");

...

Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(10*GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(30*GeV);

Note set of standard global functions. Private fns also ok. Inline via C++11 lambda fns

Small tweak planned, to unify eff/mod fns and give user control of operator ordering
36/40

Selection tools for search analyses
Search analyses typically do a lot more “object filtering” than
measurements. Rivet 2.5 provides a lot of tools to make this complex
logic expressive:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors
I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Examples:

const Jets jets = apply<JetAlg>(event, "Jets")
.jetsByPt(Cuts::pT > 20*GeV && Cuts::abseta < 2.8);

const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG("Number of raw jets, electrons, muons = "

<< jets.size() << ", " << elecs.size() << ", " << mus.size());

37/40

Selection tools for search analyses
Search analyses typically do a lot more “object filtering” than
measurements. Rivet 2.5 provides a lot of tools to make this complex
logic expressive:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors
I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Examples:

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = filter_discard(jets, [&](const Jet& j) {

if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4*GeV).size() < 3 &&

any(mus, deltaRLess(j, 0.4))) return true;
return false;

});

37/40

Selection tools for search analyses
Search analyses typically do a lot more “object filtering” than
measurements. Rivet 2.5 provides a lot of tools to make this complex
logic expressive:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors
I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Examples:

// Discard electrons close to remaining jets
const Particles isoelecs = filter_discard(elecs, [&](const Particle& e) {

return any(isojets, deltaRLess(e, 0.4));
});

37/40

Selection tools for search analyses
Search analyses typically do a lot more “object filtering” than
measurements. Rivet 2.5 provides a lot of tools to make this complex
logic expressive:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors
I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Examples:

// Discard muons close to remaining jets
const Particles isomus = filter_discard(mus, [&](const Particle& m) {

for (const Jet& j : isojets) {
if (deltaR(j,m) > 0.4) continue;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4*GeV).size() > 3)
return true;

}
return false;

}); 37/40

That’s all, folks

38/40

Summary

I Rivet is a user-friendly MC analysis system for prototyping
and preserving data analyses

I Allows theorists to use your analyses for model development &
testing, and BSM recasting: impact beyond “get a paper out”

I Also a very useful cross-check: quite a few ATLAS analysis bugs
have been found via Rivet!

I Strongly encouraged/required by ATLAS (and CMS?) physics
groups. Integrated with ATLAS and CMS software

I Now supports detector simulation for BSM search preservation
I Multi-weights, NLO counter-events, and multi-threading all in

the pipeline
I Feedback, questions and getting involved in development all

very welcome!

39/40

I Signal and background files for Z → eµ
I Write analysis code to reconstruct meµ, e.g. CMS PAS EXO-13-005

I Example code from downloads page, MC_ZMUE.cc

c = 0.1
c = 0.01
c = 0.001
BG

80 85 90 95 100
10 1

10 2

10 3

10 4

meµ [GeV]

d
σ

/
d

m
eµ

[f
b/

G
eV

]

80 85 90 95 100

E
ve

nt
s

/ 3
.0

0
G

eV

20
40
60
80

100
120
140
160
180
200 Data

Bkg uncertainty

-610×)=1µ e→Signal, B(Z

ττ→Z

Wt, tW, tt

µµ ee/→Diboson, Z

Misidentified leptons

 (8 TeV)-119.7 fbCMS Preliminary

 (GeV)µem
80 85 90 95 100

D
at

a/
B

kg
.

0.5

1

1.5

I You can use yodamerge -stack to add signal and background
histos.

40/40

	First Rivet runs
	Writing a first analysis
	Writing a data analysis
	Rivet + fast-sim for BSM searches
	That's all, folks

