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1 Introduction
In this tutorial we will use Rivet to analyse particle-level events and discuss a few common issues to
do with fiducial particle-level definitions. At the end, you will be able to write and run simple analysis
routines using Rivet, produce and plot histograms and use on-the-fly weight variations to estimate some
of the associated generator-level uncertainties.

2 Environment setup
Unless you have a local Rivet installation that you can use, consider installing the latest Rivet docker
container, e.g. using

docker pull hepstore/rivet:3.1.5

In case of problems with disk space, you may wish to consider running docker container prune and
docker system prune first. In order to make the executables from the docker container available on
the command line, you can define an alias like so

alias rivet='docker run -i --rm -u `id -u $USER`:`id -g` -v $PWD:$PWD -w $PWD hepstore/rivet:3.1.5 rivet'

A number of useful short-hand commands are defined in the supplied setup.sh script which you can
obtain by cloning the the repository and changing into the relevant directory as follows

git clone https://gitlab.com/hepcedar/mcnet-schools/dresden-2021.git

cd dresden-2021/rivet

wget "https://rivetval.web.cern.ch/rivetval/TUTORIAL/truth-analysis.tar.gz" -O- | tar -xz --no-same-owner

where the last line is to download and unpack a tarball with some HepMC event files for the exercises.

3 Getting started
In order to start a fresh Rivet routine, you can simply use the built-in script:

rivet-mkanalysis MY_ROUTINE

This will produce a mostly empty routine skeleton (a .cc file), along with some auxiliary files, such
as a .plot file that can later on be used to define plotting cosmetics (e.g. axis labels) or and .info

which contains meta data about the analysis and is mainly relevant when submitting an official analysis
routine.

Alternatively, you can base it on an existing routine. Currently, Rivet comes with O(103) routines
that document the analysis logic of particle-physics measurements from various collider setups, beam
types and beam energies. Existing routines can be browsed and inspected using

rivet --list-analyses

rivet --list-analyses ATLAS_

rivet --show-analysis ATLAS_2019_I1718132
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where the second command is an example for a more refined search and the final command displays the
meta data found in the associated .info file for the routine ATLAS_2019_I1718132. As you can tell,
Rivet knows a lot about its analyses via the associated .info file!

For this tutorial, we have prepared an initial draft routine for you already! Let’s take a look at the
content of the file called MY_ANALYSIS.cc, printed in full on the next page.
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#include "Rivet/Analysis.hh"

#include "Rivet/Projections/FinalState.hh"

#include "Rivet/Projections/FastJets.hh"

namespace Rivet {

/// @brief Add a short analysis description here

class MY_ANALYSIS : public Analysis {

public:

/// Constructor

DEFAULT_RIVET_ANALYSIS_CTOR(MY_ANALYSIS);

/// @name Analysis methods

//@{

/// Book histograms and initialise projections before the run

void init() {

_lmode = 0; // default accepts either channel

if ( getOption("LMODE") == "EL" ) _lmode = 1;

if ( getOption("LMODE") == "MU" ) _lmode = 2;

// Book histograms

vector<double> mll_bins = { 66., 74., 78., 82., 84., 86., 88., 89., 90., 91.,

92., 93., 94., 96., 98., 100., 104., 108., 116. };

book(_h["mll"], "mass_ll", mll_bins);

//book(_h["jets_excl"], "jets_excl", 6, -0.5, 5.5);

//book(_h["bjets_excl"], "bjets_excl", 3, -0.5, 2.5);

//book(_h["HT"], "HT", 6, 20., 110.);

//book(_h["pTmiss"], "pTmiss", 10, 0., 100.);

}

/// Perform the per-event analysis

void analyze(const Event& event) {

/// Todo: Reconstruct the dilepton invariant mass to fill the histogram

// ...

_h["mll"]->fill(1.0);

}

/// Normalise histograms etc., after the run

void finalize() {

const double sf = crossSection() / sumOfWeights();

scale(_h, sf);

}

//@}

/// @name Histograms

//@{

map<string, Histo1DPtr> _h;

size_t _lmode;

//@}

};

// The hook for the plugin system

DECLARE_RIVET_PLUGIN(MY_ANALYSIS);

}
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The routine skeleton has a tyical C++ layout with a few header files at the top, an init() method that
only runs once at the beginning of the run to initialise the routine, an analyze(const Event& event)

method that is executed for every single event, a finalize() method that is only called once at the end
of the routine to do some useful post-analysis opertions (e.g. scaling histograms to cross-section), and
finally a couple of member variables towards the end of the routine.

This is can be compiled like any old C++ library, and Rivet provides a wrapper script that will add
all the relevant compiler flags for you:

rivet-build RivetMY_ANALYSIS.so MY_ANALYSIS.cc

where Rivet*.so is the canonical form of a compiled Rivet plugin. Provided that there are no namespace
clashes, you could in principle compile several routines into a single shared object library like so

rivet-build RivetUBER.so ROUTINE1.cc ROUTINE2.cc ...

How neat is that? Now, in order to run the routine on an input HepMC file, you can use

rivet --pwd -a MY_ANALYSIS input.hepmc.gz

which uses the default Python script to call the Rivet libraries and tell it to run the routine MY_ANALYSIS
over the file input.hepmc.gz. The first argument is to tell Rivet to also look in the present working
directory. This is necessary in this case, since Rivet would otherwise not know where to look for a
user-supplied routine. If you’re very organised and keep your routines in a separate directory, you
also tell Rivet where to look via the environment variable RIVET_ANALYSIS_PATH. In our case, defining
export RIVET_ANALYSIS_PATH=$PWD is equivalent to using the --pwd flag.

Congratulations – these are the very basics of running a Rivet routine. Our example routine is not
all that useful yet, so let us take another look at the MY_ANALYSIS.cc file to better understand what it
does.

The first thing that you can see in the init() method is a bit of logic to set the value of the member
variabe _lmode. This is an optional feature that will become useful to steer the analysis logic from the
outside using Rivet’s options mechanism. The value of _lmode defaults to 0 but could also be 1 or 2,
depending on what the option "LMODE" (short for ‘lepton mode’, but could be anything really) is set
to when calling the routine. The default value of an option is the empty string (""), unless the user
specifies a value when calling the routine, e.g. like so

rivet -a MY_ANALYSIS:LMODE=EL,MY_ANALYSIS:LMODE=MU input.hepmc.gz

which would run two instances of the routine, once using the option using LMODE=EL and once with
LMODE=MU. Any string-type value is acceptable, unless a certain set of allowed values is specified in the
.info file.

The last part of the init() method is used to book histograms. The one-dimensional histogram pointer
type is called Histo1DPtr. Seeing as a routine can quickly accumulate many dozens or even hundreds of
histograms, it is often convenient to collect them in a key–value map, e.g. a map<string,Histo1DPtr>.
This is the underlying C++ type of the object _h which is declared near the bottom of the routine. To
book a 1D histogram, simply call one of the following

book(_h["name1"], "name1", bin_edges);

book(_h["name2"], "name2", nBins, min_edge, max_edge);

book(_h["name3"], "name3", logspace(nBins, min_edge, max_edge));

book(_h["name4"], 1, 2, 3);

The first argument is the intended target variable for the booked histogram. In this case we supply
a unique key to the map which in turn creates a placeholder. The second argument is the intended
histogram name that will be used when writing the histogram to file. This could be the same as the map
key, but does not need to be. The remaining arguments are to define the bin edges – you can specify
a vector of bin edges directly, or you can supply a number of bins between a minimum bin edge and
a maximum bin edge and let Rivet divide evenly across that range. In case the routine comes with a
reference-data file, as is often the case for measurements, the syntax shown in the last line can be used
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to let Rivet work out the binning based on the reference data. The integers are referring to the integers
in the canonical HEPData identifier (e.g. d01-x02-y03).

The analyze(const Event& event) function is executed once per event. Currently, all it does is fill
a histogram with the number 1, which isn’t all that useful. It will be up to you to make it do something
clever in the next section, but let’s first look at the final part of the skeleton.

In the finalize() method, the histogram is then just scaled by a factor σ/
∑

i wi where σ is the
generator cross-section and

∑
i wi is the sum of weights. Rivet will try to extract the generator cross-

section from the HepMC file, but the value can always be overwritten on the command line by passing
the --cross-section flag (or more conveniently --x). Rivet also keeps track of the total sum of event
weights in the sample behind the scenes, so you do not have to worry about implementing a counter to
do the boring book-keeping yourself.

Note that the scale function can be called on an individual histogram but also an entire vector of
histograms or a map with histograms as the value. Of course a normalize function exists as well.

4 Reconstructing resonances
The aim of this section is to reconstruct a Z-boson resonance from the generic Z+jets events supplied in
one of the HepMC file. In general, the reconstruction of observables should be based on the final-state
particles in the event record. The event record can be very complicated, depending on the process,
and the details of the implementation usually depend on the Monte Carlo event generator. The good
news is that there is no need to navigate the event record since Rivet provides a powerful mechanism
for projecting out the result of a final-state-based calculation from the event record: the projection.
A projection is similar to a filter in a sense – you can specify kinematic requirements on the particles
that should be considered in the calculation and Rivet will use this calculation tool to project out the
collection of final-state particles that satisfy these constraints from the event record. Projections are
declared in the init method and applied in the analyze method. Sound a bit abstract? Let’s look at
an example.

The simplest projection is called FinalState and as the name suggests it provides access to all final-
state particles. It is already enabled with a header file in our skeleton. It can be declared in the init

method as follows

FinalState fs;

declare(fs, "my_first_projection");

and then applied for every event in the analyze method like so

const FinalState& p1 = apply<FinalState>(event, "my_first_projection");

const Particles& fs_particles = p1.particlesByPt();

The first line takes the event argument and applies the FinalState to it. The result of the calculation is
saved as p1 using a const reference for computational efficieny. It’s possible to ask questions about the
projected result, e.g. in this case we are using it to retrieve a set of all final-state particles ordered by their
transverse momentum (hard to soft), which returns a vector of Particle objects. The Particle class
is Rivet’s way of combinbing particle identification (e.g. p.charge() or p.pid() for the PDG ID) and
FourMomentum (via p.momentum() or even just p.mom()) information into one class. In fact, the latter
is only really needed when wanting to combine different four-momenta, seeing as common kinematic
quantities are also directly accessible via standard methods like pT, eta, rapidity, E, phi as well as
many others, including covenient short-hand methods such as abseta and absrap.

Admittedly, the FinalState by itself is a bit dull. You might not even care about the full final state.
Let’s imagine you are prototyping an analysis for a detector that consists of a tracker but does not have
a calorimeter. Such a detector can reconstruct the kinematics of charged particles in a magnetic field,
e.g. by tracing out the silicon hits produced by charged pions in the detector, but it would struggle to
detect neutral particles. Now, we could loop over the particles we retrieved from the FinalState and
check the charge of each particle to get the relevant subset. Or we just use the ChargedFinalState

projection by declaring
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declare(ChargedFinalState(), "my_second_projection");

in the init method and using

const Particles& cfs_particles = apply<ChargedFinalState>(event, "my_second_projection").particles();

which lets the projection deal with the fiddly bits, so that we can concentrate on the high-level physics!
Rivet has a large suite of different projections available, such as the VisibleFinalState (clue is in

the name), the PromptFinalState (all final-state particles that did not originate from a hadron decay)
or the VetoedFinalState (anything but certain types of particles), just to name a few.

Why should I care, you’re asking? Well, for starters projections can take other projections as con-
structor arguments to augment them, but they become a right treat when supplying a Cuts argument.
This feature is based on C++11 functors, making for rather expressive argument logic:

FinalState charged_tracks(Cuts::charge != 0);

FinalState IDtrack(Cuts::charge != 0 && Cuts::abseta < 2.5);

FinalState allMuons(Cuts::abspid == PID::MUON && Cuts::pT > 20*GeV);

PromptFinalState promptMuons(allMuons);

The first line is just an alternative way of specifying the ChargedFinalState. The second line asks for
the same thing but with an additional requirement on the charged-particle pseudorapidity. The third
line is a concise way to ask for all muons with a transverse momentum of at least 20 GeV, and the last
line uses the previous result to get the subset of prompt muons, i.e. those not originating from a hadron
decay. Imagine having to write all this up using for loops. That’s why you should care.

The advantage of projections is really threefold:

• They can be supplied with a Cuts argument to pull a fairly laborious bit of analysis logic into a
neat one-liner.

• Projections can be chained together to construct even more complex final-state subsets.

• When running many routines, Rivet will automatically cache the result of equivalent projections
behind the scenes for that extra bit of efficiency.

Why not take a moment to play around with this yourself by having a go at the following exercise?

Exercise 1
Modify the provided .cc file to select events with exactly one same-flavour opposite-charge lepton
pair using leptons with a transverse momentum of at least 10 GeV and restricted to lie within 2.5
in pseudorapdity. Be sure to select an electron or muon pair depending on the value of _lmode.
Use the selected lepton pairs to reconstruct the dilepton invariant mass and pass it into the
prepared histogram. Compile the routine and run it over the provided HepMC events using both
lepton-flavour options in the same run.

At the end of the exercise you should have produced a single output file in the yoda format. This
format is ASCII-based and can be inspected with your favourite text editor. Can you find your filled
histogram?

In fact, you should see loads of them! There will be a version for each of the 18 variation weights
(including the nominal) in the setup as well as a version before and after running the finalize method
(watch out for the key word RAW) as well as a version for both of the LMODE options. We will come back
to the variation weights in a later exercise. For now, let us produce a plot comparing the prediction for
the electron channel and the muon channel. Rivet provides a nifty little script for you that will make
the plots and arrange them in a little HTML-based booklet for you to enjoy them using your favourite
browser. You can try this out using the command

rivet-mkhtml --errs --no-weights Rivet.yoda

This will create a directory rivet-plots which contains an index.html file among other things. The
--errs is to switch on statistical error bars and the --no-weights flag skips all but the nominal-weight
predictions. Check it out!
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You should find a Z-boson resonance similar to the plot above. In case you are missing the axis labels,
try the

export RIVET_ANALYSIS_PATH=$PWD

trick to let Rivet know about where to look for the plot file with the cosmetic settings that we have
prepared for you. Alternatively, you can pass this file directly to the plotting command using the -c

flag. Does the ratio between the two predictions match your expectation?

5 Bare level vs dressed level
It turns out leptons lose energy through photon radiation and the effect is much more pronounced for
electrons due to their lower invariant mass. What we have plotted is the invariant mass of the dilepton
spectrum constructed from leptons at the so-called bare level, i.e. after photon radiation, which explains
why the electron-pair lineshape deviates from the muon-pair version. Luckily, Rivet offers more complex
projections that implement experimental strategies, e.g. for lepton dressing, heavy-flavour tagging or
mass-windowing and so on. For instance, the DressedLeptons projection dresses the bare lepton four-
momentum with all photon four-momenta, within a given cone size (typically 0.1) in order to recover
energy losses from QED final-state radiation (FSR). Leptons whose four-momenta have been corrected
in this way are referred to as being reconstructed at the dressed level. The DressedLeptons constructor
takes the following arguments:

DressedLeptons leps(photon FS, bare-lepton FS, dressing-cone size, optional selection cuts);

This is the recommended procedure to define leptons at the particle level, since it is more robust against
generator differences in the modelling of QED FSR. Let’s see this in action!

Exercise 2
Implement an additional plot of the dressed-level dilepton invariant mass spectrum in the cc file,
with otherwise equivalent kinematic requirements on the leptons. Re-compile, re-run and re-plot
to check the effect.

At the end of the exercise you should be able to produce two plots similar to the ones on the next page.
The one on the left-hand side shows the dilepton invariant mass spectrum constructed from leptons at
the bare level, while the one on the right-hand side shows the same spectrum constructed from leptons
at the dressed level. The compensating effect of the dressing procedure should be clearly visible when
comparing the two ratios.
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6 Jet-based observables
Rivet has a lot of neat and flexible built-in support to make your life easier and in this section we will
look into how to make use of the most common features. We will start by constructing our own jet
collection. Some general advice upfront: avoid coding up built-in methods from scratch as this can be
highly error prone! Besides, why reinvent the wheel?

Jets are typically constructed with the FastJet program. Rivet has a FastJets projection which uses
the FastJet program internally. The constructor could look like this:

FastJets jets(input FS, FastJets::KT, 1.0, JetAlg::Muons::NONE, JetAlg::Invisibles::NONE);

The first argument is the FinalState-based input collection of particles to be clustered. The second
and third argument specify the clustering algorithm and associated jet-radius parameter. The last two
arguments are optional and can be used to reflect experimental strategies for how to deal with muons
or invisibles particles in the clustering. Possible values are NONE, DECAY, ALL; the default being to
include all muons (Muons::ALL) but to exclude all invisible particles (Invisibles::NONE). Similar to
the particlesByPt() method we encountered earlier, the FastJet projection comes with an equivalent
jetsByPt() method. It takes an optional Cuts argument as well, which allows to efficiently select a
subset of the jets that pass certain fiducial requirements. Rivet supports auto-conversion to and from
fastjet::pseudoJet as well as its own Jet class, i.e. it also does not matter which version is passed into
the various built-in functions that Rivet has to offer. As always, remember to add the relevant include
statement

#include "Rivet/Projections/FastJets.hh"

near the top of the routine if it is not already included.

Exercise 3
Select events with 66 GeV < m`` < 116 GeV at using leptons defined at the dressed level. Using
the anti-kT algorithm with a jet-radius parameter of 0.4, cluster all final-state particles within
|η| < 4.9, except for muons and invisible particles. Select all jets with pT > 10 GeV and within
|y| < 4.5, then count them to plot the exclusive jet multiplicity. Additionally, add a plot of
the scalar jet pT sum. The latter is often referred to as HT and is a measure for the amount of
hadronic activity in the event. Run this setup separately for each lepton channel and compare the
curves. Optional: You may find Rivet’s built-in sum function helpful which takes three arguments:

sum(iterable container, property, initial value)

and returns a scalar or vector depending on the property called on the elements in the container.
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At the end of this exercise, you be able to produce two plots that look something like this:
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The differences between the electron and the muon channel are rather striking, but expected consider-

ing what goes into the jet clustering. Out of all the visible particles within the pseudorapidity acceptence,
only the muons have been removed while the electrons are included into the jet-clustering algorithm as
though they were jets. In some sense this is very similar to how electrons and hadrons would leave an
energy deposit inside a calorimeter, while muons tend to pass through it and would need to be detected
via a dedicated tracker.

At the particle level one has full flexibility about what to include in the clustering and what not.
From the point of view of e.g. ATLAS and CMS, however, usually everything is a jet to start with:
Most visible particles produced in an event eventually hit the calorimeter and detector-level jets can be
constructed from the energy depositions in the calorimeter cells. Additional dedicated sub-detectors may
exist to identify e.g. electron, photon or muon candidates and as a result, a given physics object can
appear in several of the object collections reconstructed using the various detector components. This is
why “overlap removal” is a thing in experimental analyses. In its simplest form, the objects from the
dedicated sub-detectors are preferred, e.g. due to superior resolution or selection efficiency, and so the
candidates from other object collections (reconstructed with less precise detector components) which fall
into the same fiducial phase space are simply removed from the final state in those object collections.

Exercise 4
Modify the cc file to remove all jets that are within ∆R < 0.4 of a selected dressed-level electron
or a dressed-level muon, then re-compile, re-run, re-plot and re-compare. Optional: You may find
Rivet’s built-in discardIfAnyDeltaRLess function helpful which takes three arguments:

discardIfAnyDeltaRLess(input container, reference container, cone size)

which returns a copy of the input container with all elements removed that fall within a cone of
the specified size with any of the elements of the reference container. An i added in front of the
function name will modify the input container in place without making a new copy.

At the end of this exercise you should be able to obtain plots similar to those shown on the next page,
where the kinematic distributions are now compatible between the electron and the muon channel. Of
course you are free to code up the overlap-removal prescription using a standard C++ for loop, but notice
how much easier to read the code becomes when pushing the boring bits of experimental strategy into
Rivet’s built-in functions to leave more headspace for physics. There is another common experimental
strategy that emphasises this point even better, which we will focus on in the next section.
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7 Heavy-flavour tagging
The preferred way to define b-jets or c-jets at the particle level is to ghost-associate heavy-flavour hadrons
to the jets. The idea behind this strategy is to “let the clustering algorithm decide” this in an infrared-safe
way. Heavy-flavour hadrons are not stable and hence not included in the jet clustering, which is based
on stable final-state particles. “Ghost association” is a technique whereby these hadrons are manually
added to the collection of input particles that are to be clustered, but with their 4-momenta scaled down
to (effectively) meaningless size, such that the anti-kT algorithm can just pull them into a jet as it sees
fit.

No need to stress: Rivet automatically implements this for you behind the scenes! ‘Is my jet a b-jet?’
becomes as simple as

if (myJet.bTagged()) ...

One can even use the familiar Cuts argument to refine the tagging further:

if (myJet.bTagged(Cuts::abseta < 2.5)) ...

Access to the tagged hadrons is also provided via myJet.bTags() and needless to say that similar
functions for c-tagging are available as well. Let’s practice this!

Exercise 5
Modify the cc file to add a plot of the exclusive b-jet multiplicity. Optional: You may find Rivet’s
built-in count function helpful which takes up to two arguments

count(input container, selection criterion)

where the selection criterion could be a Cuts argument or a C++ function that is to be called on
the elements in the input container, such as Rivet’s built-in hasBTag(Cuts) method.

At the end of this exercise, you should have produced a plot similar to the one shown on the next
page. Notice how much more readible the code becomes when relying on the built-in functions. A typical
implementation of ghost-association can easily take somewhere between 200-300 lines of C++ and so
re-inventing the wheel here would not only clutter the routine but also boost the chances for bugs to be
introduced.
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8 Scale uncertainties using on-the-fly variation weights
The events provided for you in the HepMC file were produced using on-the-fly variations of the factori-
sation and renormalisation scale in matrix element and parton shower. In fact, the setup also includes
these variations for the case where only the matrix element scales were varied but not the scales in the
parton shower. In this exercise we want to use the variation weights to estimate the corresponding scale
uncertainties and add some uncertainty bands to our plot.

Fortunately, we already have all the ingredients to do this, since Rivet will automatically book one
histogram per weight variation for you behind the scenes. Out-of-the-box multiweight support is one
of the main new features of the Rivet 3 release series! In order to make better use of the available
statistics, we recommend to re-run the routine without an LMODE option, so as to accept either lepton-
flavour channel in the same run. Consider running one of the routines included natively in the Rivet
release to be able to compare against data as well, such as ATLAS_2017_I1514251, the 13 TeV Z+jets
measurement (arXiv:1702.05725) from the ATLAS experiment for instance.

Try plotting this without passing the --no-weights flag to the rivet-mkhtml command. What you
should see is something like the following:
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The default behaviour is to superimpose the available variation weights in a lighter shading along with
the central value. This already gives an idea of the spread of the variations, but it also highlights that
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there seem to be some variation weights in the setup that correspond to some auxiliary quantity which
isn’t mean to be used for histogramming. These are the two curves which lie at least a factor O(104)
below the central value. There is currently no agreed upon standard for how to label weights and so the
Rivet default behaviour is to be as inclusive as feasible when it comes to weight variations. However,
it also provides some functionality to filter out a specific subset of the weights. In the following we will
look at a few examples for how to deal with weights when using the plotting scripts, but in principle
similar options are also available to (de-)select weights already at run time (cf. rivet --help for the
available flags).

Let’s take a look at what sort of variation weights are included in the setup:

import rivet, yoda

print( set([ rivet.extractWeightName(name) for name in yoda.read('Rivet.yoda') ]) )

Here we are using the Python API of YODA to load the output file, loop over all the objects in the file
and to use Rivet’s Python API to extract the weight names. The result is then turned into a Python
set in order to remove duplicate entries in the array. You will notice that most of the scale variations
seem to follow the pattern MUR*_MUF*_PDF261000 at their core where the wild card is either 0.5, 1 or
2. We can use this observation to construct a regular expression that will select all the relevant weights

rivet-mkhtml --errs Rivet.yoda:"Variations=MUR.*MUF.*PDF261000"

This will essentially produce the same plots as above but without the outliers at the bottom of the
canvas. Let’s take it one step further and attempt to combine the weights into a band. In general, the
prescription for how to combine the scale and PDF variations depends on the specific setup, in particular
the PDF set used and the precise format of the weight names. The combination strategy needs to be
defined by the user in the end, but Rivet supports the most common prescriptions out of the box. The
simplest thing one could ask is to combine the weights into an uncertainty band based on the envelope
of the scale variations. For instance, we could ask Rivet to work out the envelope for the same regular
expression as we had above, like so

rivet-mkhtml --errs Rivet.yoda":Variations=MUR.*MUF.*PDF261000:BandComponentEnv=MUR.*MUF.*PDF261000"

which will produce something like the following:
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This is not too bad for a first quick look at the rough size of the uncertainties, but we can do better with
a little bit more work. In particular, if we take another close look at the list of weight names available
for this setup, we see versions with and without an additional ME_ONLY_ prepended to the name. The
difference between these is that the scales were only varied in the matrix element or coherently in both
matrix element and parton shower. It might be interesting to separate these out into two bands1.
1There are different ways to go about this. In this tutorial, we try to keep it simple and do everything via the command

line using a single output file. For more complicated prescriptions, it might be more convenient to play around with
the Python API and use it to combine the weights in more complex ways and/or to write out a separate output file for
different uncertainty components in order to keep things potentially more organized.
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Exercise 6
Complete the code in the plotBands.sh skeleton.

Once the weights are combined into bands, it is straightforward to superimpose different bands using
the usual plotting scripts. In the example above, we also play around with different colours, band styles
and opacity levels to give an idea for how to do a few more fancy style customisations with the plotting
scripts in general. The result should look something like this
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Even with this small event sample, it can be seen that the parton-shower-based scale variations become
relevant in the more exclusive regions of phase space.

At this stage you should be familiar with the basics of running Rivet, be able to write a custom
routine, make some first plots and even construct uncertainty bands from the weight variations. If you
have some spare time, feel free to have a go at the next section which will take you through the basics
of homogeneous and heterogeneous merging.

9 Merging parallel runs and different processes
In practice, we rarely have to deal with a single event file, over which we can run our analysis. Typically
different processes are generated separately, giving rise to multiple events files with different process-
dependent cross-sections associated with each of these files. We can then run our analysis over each of
these files and thereby estimate the contribution of the respective process to the region of phase space
that we are interested in. By stacking all contributing processes on top of each other – weighted by
cross-section – we would arrive at the total prediction. The stacking of different processes is an additive
combination that is sometimes referred to as heterogeneous or non-equivalent merging.

What is more, we might need so many events to be able to arrive at a smooth prediction that storing
the events in one huge event file is just not practical and we find it more efficient to produce a given
process in many parallel runs, leading to many output event files for the process under consideration.
This has the advantage that we can also run our analysis in a parallelised fashion, thereby reducing
the overall processing time greatly. The downside is that we end up with many output histogram files
when really we only want a single one. Combining output histogram files in a statistically correct way as
though they had come from a single run is sometimes referred to as homogeneous or equivalent merging.
Let’s take a look at both cases.

9.1 Equivalent merging
We can emulate a parallel run by splitting our run in half as follows
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rivet --pwd -n 5000 -o part1.yoda.gz -a MY_ANALYSIS Zjets13TeV_10k.hepmc.gz

rivet --pwd --nskip 5000 -o part2.yoda.gz -a MY_ANALYSIS Zjets13TeV_10k.hepmc.gz

where the first command only runs over the first 5000 events and the second skips the first 5000 events.
In a sense, this is very similar to running the analysis multiple times on a subset of the files from a big
pool of events files corresponding to the same process. In order to merge them correctly, one should be
mindful of the finalize part of the a given routine: That is the part of the analysis where histgrams are
normally scaled to cross-section or normalised to unity, or where ratios or efficiencies are constructed.
In general, these are post-processing operations that should really be applied to the merged histograms,
and so the art of equivalent merging is to first undo whatever scaling has been applied in the finalize

method, then to stack the pre-finalized histograms before finally reapplying the finalize logic to the
stacked objects. For this reason, Rivet will write out every booked histogram twice, correspponding to
the state of the object before and after running finalize respectively. The pre-finalize version will
come with the prefix /RAW in the path – check it out for yourself!2 In order to perform a statistically
correct equivalent merging, we want to stack the raw histograms and simply rerun the finalize part of
the routine over the stacked objects. The following command will achieve this:

rivet-merge -e -o merged.yoda.gz part1.yoda.gz part2.yoda.gz

where the -e (or --equiv) option denotes equivalent merging.3 We can easily verify that this gives the
same result as our original output file:

rivet-mkhtml --errs --no-weights Rivet.yoda:"Title=single run" merged.yoda.gz:"Title=merged run"

which should give you a straight horizontal line at unity in the ratio panel.

9.2 Non-equivalent merging
We can use our lepton-mode option to produce separate output histogram files for the electron and the
muon channel as follows:

rivet --pwd -o zee.yoda.gz -a MY_ANALYSIS:LMODE=EL Zjets13TeV_10k.hepmc.gz

rivet --pwd -o zmm.yoda.gz -a MY_ANALYSIS:LMODE=MU Zjets13TeV_10k.hepmc.gz

This is almost as though we had been given separate HepMC event files for each lepton channel, except
then we wouldn’t have had to specify an option since the event sample would only contain one lepton
flavour to begin with.

In order to stack the histograms in the two output files, simply run

rivet-merge --merge-option LMODE -o zll.yoda.gz zee.yoda.gz zmm.yoda.gz

where the -e flag from the previous section is now missing since non-equivalent merging is the default
mode of rivet-merge. Instead we use the optional --merge-option flag here to remove the option
string from the histogram path. We can again easily verify that this gives the same answer as our
original output file:

rivet-mkhtml --errs --no-weights Rivet.yoda:"Title=both channels" zll.yoda.gz:"Title=stacked channels"

where Rivet.yoda is the output from running the routine without options over the HepMC event file.

2This trick also enables us to interrupt a Rivet run at any point and pick it up where we left off – also known as reentrant
histogramming.

3You might notice a warning message about reentrant safety, which Rivet will print when it doesn’t recognise a routine,
e.g. because it cannot find the associated .info file. Reentrant histogramming can only work if all the information need
to pick up the run where it was interrupted is provided in the output file. If the logic applied in finalize depends on
information which can only be derivef from the event file, then the reentrant histogramming will not be possible.
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10 Summary
In this tutorial, we covered various practical aspects of a typical truth-level analysis as well as common
issues to do with fiducial particle-level definitions. A Rivet routine is a snippet of C++ code that exactly
implements the analysis logic. We wrote a simple routine to analyse events of weak-boson production
in association with jets using Rivet. (An example solution will be made available after the last tutorial
session.) Along with making the measurement results publicly available on HEPData, providing a Rivet
routine is an important aspect of analysis preservation that helps to maximise the impact of the analysis
results as well as making them overall more useful to the community.
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